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7-km GEOS-5 NR

2-year run produced with GEOS-5

7-km horizontal resolution

Non-hydrostatic

Cubed sphere, finite volume numerics
Non-orographic parameterized gravity wave drag
after Garcia and Boville, 1994

2nd order divergence damping

Relaxed Arakawa-Schubert moist physics scheme



NR vertical resolution
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NR vertical velocity on 100 hPa level

With such a high resolution model, we can study small-scale (< 1000 km)

gravity waves waves, where and how they are generated, and their effects on

the general circulation
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January Absolute GW Momentum Flux at 20 km

Kanto 6.29 mPa CAMS 0.60 mPa

HadGEM3 3.99 mPa

| s ‘f =

Geller et al., 2013 JC

Nature Run 0.6 mPa
(Resolved GWs < 1000 km)

Abs Flux (log,, Pa) at 20 km

-1.0 -0.5 0.0 0.5 1.0 1.5

Global variations very
realistic

Mean values on the low
end (comparable to CAMS5)
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July Absolute GW Momentum Flux at 20 km

Kanto 6.29 mPa CAMS5 0.50 mPa

Nature Run 0.6 mPa
(Resolved GWs < 1000 km)

Global variations very
realistic

Geller et al., 2013 JC

Mean values on the low

end (comparable to CAM5)
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October 2005
Vorcore Nature Run Abs Mom Flux from Resolved

GWs <1000 km at 20 km

October 2005

Abs Flux [log,, Pa]
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AIRS and NR brightness temperature (T,)

AIRS

anomalies (< 500 km)
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AIRS & NR T, sampled at AIRS locations:
Number of events

AIRS Thousands of Events

* For AIRS, events with amplitudes > 3*noise(T)
* For Nature Run, events with amplitudes > 0.02K

Events occur with similar global patterns
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AIRS & NR T, sampled at AIRS locations:
Amplitudes

AIRS Amplitudes (K) NatureRun Amplitudes (K)
90 T T PO
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* AIRS amplitudes are about 5x larger than NR

* Global patterns are very similar
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AIRS & NR T, sampled at AIRS locations:
Wavelengths

NatureRun Wavelength (km)
400 90 r r T r
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White = little or no data

AIRS Wavelengths are about 2x smaller than NR
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AIRS & NR T, sampled at AIRS locations:
Propagation direction

Phase Line
Orientation

NatureRun Azimuth from Eost/West (rod)

Gray = little or no data

* At 30-40km altitude, AIRS sees waves propagating latitudinally into the jets (e.g. Sato et
al., 2009)

* Nature run shows this even more clearly

* AIRS waves propagate mostly within +/- 30 degrees from zonal except in SH winter
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Recap: GW comparisons

* Global pattern of gravity wave absolute
momentum flux in NR compares well to other
models but global means are on the low end

e Gravity wave absolute momentum flux in SH
compares very well to Vorcore over Antarctic
peninsula but is weaker on average

* NRis similar to AIRS in global pattern, but NR
waves are smaller amplitude and longer
wavelength
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Pressure [hPa]

Quasi-biennial oscillation in tropical lower
stratosphere winds

MERRA
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—

 QBO is driven by a continuum of waves, from large-scale Kelvin and Rossy-
gravity waves to small-scale gravity waves

* The details of this wave spectrum are still not understood

* More than half of the forcing is due to gravity waves that must be
parameterized by GCMs in order to obtain a model QBO

* Model QBOs are very sensitive to changes to many parameters, including
resolution, GW parameterization, and dynamical core

Modeling the QBO is extremely challenging
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Pressure [hPa]

Quasi-biennial oscillation in tropical lower
stratosphere winds

AN NI AANNY

70
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Why do we care about having a QBO in models (and for the right

reasons)?

* Influences tropical-extratropical teleconnections and seasonal forecasts of
the North Atlantic Oscillation [Scaife et al. 2014] and tropical cyclone activity
(e.g. Camargo and Sobel [2010])

» Differences in wave forcing and/or QBO winds in the lowermost
stratosphere could affect tropical upwelling

* How will QBO change with climate? Implications?
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Evidence the QBO is changing with warming

climate
QBO amplitude at 70hPa tropical upwelling at 70hPa
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Kawatani and Hamilton, 2013 Nature

Evidence that QBO winds near tropopause have grown weaker with time
Consistent with model predictions that the Brewer-Dobson circulation is
growing stronger, and will continue to do so in the future 24



The quasi-biennial oscillation in a warmer climate:
sensitivity to different gravity wave parameterizations
Schirber et al [2014]

B [kg/(ms®)] (-107°)

Effects of changes to the model’s gravity wave scheme on the simulated QBO.
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Subtle changes in the gravity wave parameterization details gave different
predictions for changes in the QBO in a warmer climate

A previous study predicts a lengthened future QBO period, but here many
experiments gave a shorter period
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NR reproduces broad range of
convectively coupled waves

TRMM _ Eastward
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Antisymmetric

Symmetric

Frequency [cpd]

Frequency [cpd]

NR precipitation spectra with

background removed
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NR has the same
preferred modes of

variability as the
real atmosphere
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Fraction (%)

Probability distribution of surface
orecipitation compared to TRMM

l = Observation (PR)
W ? pr| e Nature Run
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Precipitation Rate (mm/hr) Precipitation Rate (mm/hr)

* NR>TRMM for light precipitation (<1 mm/hr) and heavy
precipitation (> 20 mm/hr)

NR < TRMM for precipitation between 1 and 20 mm/hr
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Frequency [cpd]

NR vertical EP-Flux compared to that derived
from Global Cloud Imager
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Double lobe structure is present in NR

NR captures the high phase speed lobe




Height (km)

Small-scale temperature variance
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* Small-scale waves drive tropopause T variance

* Interaction between small-scale waves and u=0 region
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Pressure [hPa]

Pressure [hPa]

NR and MERRA-2 QBO
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NR parameterized GWD and resolved EP-

Pressure [hPa]

Pressure [hPa]

flux divergence
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Resolved EP-Flux divergence < 25 % of parameterized GWD
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NR vertical EP-Flux divergence from different
wavenumber-frequency bins
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High-frequency, small scale GWs dominate during westward shear phase

* Kelvin waves provide half of the forcing in eastward shear phase
* In agreement with previous studies (e.g. Kawatani et al., 2010) 35




Pressure [hPa]

Large amount of cancelation in both shear zones and especially in westerly shear zones

NR EP-flux divergence averaged over
shear zones
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NR vertical EP-flux div compared to
MERRA-2 total zonal forcing
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Without large amount of cancelation perhaps the

parameterized GWD could be tuned down
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Kinetic energy, Power (m"2/s"2)
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Too much dissipation?
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NR KE spectrum follows n3
law for large scales

NR KE spectrum falls off
sharply as horizontal
wavelength approaches
smaller scales

Characteristic of
unrealistically large

dissipation at the smallest
resolved model scales
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Pressure hPa Pressure (hPa)

Pressure hPa

w = o
S O W 4. w

100

100

100

Influence of dynamical core choice?
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* Dry GCM dynamical cores

e (QBO-like oscillations in all

but FV

* Measures of wave activity
much lower in FV

Yao and Jablonowski, 2015 JAS
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log-pressure altitude (km)
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Vertical resolution?
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Pressure [hPa]

Vertical resolution?

Zonal Wind [m/s] EP-Flux Div [m/s/day]
10 | 10 |
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Increasing the horizontal resolution by 16x leads to 4x larger EP flux
divergence near 0 m/s wind line

Doubling vertical resolution leads to 2x larger EP flux divergence near
0 m/s wind line
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Recap: NR QBO

* Resolved small-scale waves in NR are well-
represented and behaving realistically

e Resolved waves in NR contribute about 25% of
zonal force for QBO

 Still need parameterized GWs to get QBO
— Vertical resolution?
— Too much dissipation/damping? Dynamical core?
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July 2005

GW sources in the SH

GW (<1000 km) Abs
Mom Flux at 15 km

Binned to 10° lon x 5° lat

N

Abs Flux [log,, Pa]

Can we relate large-scale
diagnostics of convection, fronts,

and geostrophic adjustment in the
troposphere to the GW momentum
flux in the lower stratosphere?
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Convection
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Frontogenesis function
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Frontogenesis function

Frontogenesis function at
600 mbar
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Geostrophic adjustment

Spontaneous emission of gravity waves from PV anomalies in a
vertical shear produce a gravity wave EP-flux given by:

J=Richardson number

Lott et al., 2010 JAS




Estimate of EP-flux due to PV
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SH gravity wave sources

Frontogenesis
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SH gravity wave sources

Spearman

Precipitation

July 2005

Convection is an important source of GWs in the SH
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Importance of moisture

More intense GW emission with higher moisture in idealized baroclinic jet

0% RH

40% RH

60% RH

80% RH

Wei and Zhang, 2014 JAS
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Recap: SH gravity wave sources in NR

 We looked at SH sources of gravity waves by
relating large-scale diagnostics like
precipitation, PV anomalies, and frontogenesis
to GW momentum flux

* Precipitation and PV anomalies show
strongest correlations with GW momentum
flux for month of July, highlighting the
importance of convection as a source



Conclusions

Global pattern of gravity wave absolute momentum flux in NR compares well to
other models but global mean values are on the lower end

Gravity wave absolute momentum flux in SH compares very well to Vorcore over
Antarctic peninsula but is weaker on average

NR is similar to AIRS in global pattern but NR waves have smaller amplitude and
longer wavelength

Resolved small-scale waves in tropics are well-represented and behaving
realistically in NR

Resolved waves in NR contribute about 25% of zonal force for QBO
Still need parameterized GWs to get QBO

A look at SH sources highlights the importance of convection as a source
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