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The Problem of Data Assimilation
While there are many sources of error in Numerical 

Weather Prediction, one of, if not the, largest is the 
characterization of the initial conditions (or analysis)

The issues of atmospheric analysis are fairly simple to 
comprehend, but difficult to address
– Billions of model variables

• Simply: T, q, u, v, p, ps
• Complexly (and realistically): qv, convective and large scale ql & qi, 

aerosol components, w/ω, etc.
• Resolutions approaching single-kilometer scales globally 

– Millions of observations, recently eclipsing 5 million 
observations actively assimilated per 6 hours

How do we blend the model fields with the observations?
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The Problem of Data Assimilation
Very, very basically, we average the two together, 

weighted inversely by their respective errors
– Observations with large error will carry little weight, and 

vice versa 
– This would maybe work if we observed every variable at 

every point
In practice, there are many issues at hand

– All points are not observed, so cross-correlations are used 
to attempt to spread information horizontally, vertically, 
and across variables

• Mass and wind observations must be in balance
– Most observations are not even measuring the variables 

we are trying to analyze
• T, q, u, v, etc. aren’t the analyzed variables
• The bulk of the modern observing system is satellite radiances
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The Variational Approach

y – H(x) = y – (H(xb) + Hδx)

H(x) transforms the background/guess state to observation 
space
– If in the same space, as simple as an interpolation
– If in different space, H can be radiative transfer (radiances), a 

projection of the wind

To solve the minimization, the H operator is linearized about 
the background state to form H
– To compensate for nonlinearities, multiple linearizations, or 

outer loops, are performed in the analysis solution 
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The Impact of the Variational Approach
It was the use of Variational

methods that collapsed 
forecast skill gaps 
between hemispheres

These methods allowed for 
the effective assimilation 
of satellite radiances
– The linearization of 

radiative transfer 
– real meteorological 

information of the 
background fields

Figure from ECMWF
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Observations assimilated per 6-hr cycle
Observations as a Function of Time

The vast majority of observations over the modern era (1979-
onward) are of satellite origin

– Since 2002, infrared observations account for ~65% of observations
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Infrared Satellite Observations
IR observations are generally classified into measurements from 

imagers and sounders
– In terms of trade-offs, imagers sacrifice spectral and radiometric 

resolution for spatial and temporal resolution
• In terms of NWP, biggest contribution is atmospheric motion vectors (AMVs)

– Sounders do the opposite, as spectral and radiometric resolution 
can be equated to vertical resolution

• Pre-Modern era: Vertical Temperature Profile Radiometer (VTPR), NOAA-2 
through NOAA-5 (1972-1979)

– 8 Channels
• Modern era: High-resolution InfraRed Sounder/2-4 (HIRS), TIROS-N, NOAA-6 

through NOAA-19, Metop-A/B 
– ~20  channels

• EOS period, onward:  Atmospheric InfraRed Sounder (AIRS, on Aqua), Infrared 
Atmospheric Sounding Inferferometer (IASI, on Metop-A/B/C), Cross-Track 
Infrared Sounder (CrIS, on NPP & JPSS) 

– O(1000-10000) channels
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How IR Observations Contribute

Observation impacts, also known as Forecast Sensitivity to 
Observations, are a projection of 24 hours forecast error into 
observations space
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How IR Observations Contribute

Normalizing by the number of observations, it is seen that the infrared 
observations drop to the bottom. 
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How IR Observations Contribute

Per instrument, the modern infrared sounders are near, or exceed, the 
microwave sounders in total impact. 
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Infrared Observation Impact
As seen, IR observations make up ~65% of the current global 

observing system
But only a small portion of the total number of observations available 

are utilized:
• Spectral Thinning

– AIRS: 281 of 2378 channels are available, 124 active (5.2% of total)
– IASI:  616 of 8461, 137 active (1.6%)
– CrIS: 399 of 1305, 81 active (6.2%)

• Spatial Thinning
– 1 spectra per instrument for every 145x145 km thinning mesh 

(observation footprint size is ~15km) (~1.5% of the previous percentages)
• Quality Control

– Via traditional means, infrared observations sensitive to clouds are 
discarded via quality control (~25% of the previous 1.5%)
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Infrared Observation Impact
So based on real numbers:

– AIRS:  0.04% of all observations are assimilated
– IASI:  0.04%
– CrIS:  0.19%

So while the instruments provide as much 
bang as any other satellite instrument type 
out there, why can we only use such small 
percentages of the data?
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Data Thinning
Data is thinned spatially to compensate for horizontal 

correlations in representativeness
– Even as model grid spacing approaches and exceeds 

observation resolution, the models are not resolving 
meteorological features at the resolution of grid spacing

– Too many small-scale features will cause gravity waves that 
are numerical, non-physical in nature

Data is generally thinned in the infrared to get the most 
cloud-free observations
– In the infrared, this is generally the spectrum with the 

warmest observations in the 11 μm window
– Are there situations where less thinning would be desirable?
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Thinning and Hurricanes

In the presence of Hurricane 
Gonzalo (L), more observations 
in the hurricane can be seen by 
reduced thinning (Top Right) 
versus the control (Top Left).  
For comparison, the equivalent 
increased thinning (bottom) is 
shown

CTL RAD2

RAD3
O. Reale, E. McGrath-Spangler
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Only those obs that 
are insensitive to 
clouds are assimilated

– Cloud-free spectra
– Individual channels 

that are insensitive 
to the cloud 
surface

Retrieved Cloud Height

Clouds and the Infrared
Currently in the GSI, which is the data assimilation algorithm 

used at GMAO, NCEP, and many other locations through the 
US, radiative transfer only treats radiances as clear-sky 
observations
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How are Clouds Handled in GSI
Cloud screening is a two-step process

1. Retrieve a cloud height
• This is done via a minimum residual method (Eyre and Menzel 1989)

2. Compare cloud height against transmittance profile
• If layer-to-top of atmosphere transmittance of a channel at the retrieved 

cloud height is greater than 2% reject the channel

For channels most-sensitive to the surface, this rejects ~80% 
of these data.

Assumptions in this method are fundamental sources of error:
– Single layer clouds; Infinitesimally thin, black clouds; treated as 

fractionally gray
– Background biases can propagate into the retrieval

• Both with respect to variational bias correction and uncorrected 
observation departures
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AIRS CTP vs. MODIS High CTP
Source of 
Contamination

Over-
Conservative

Comparing:
AIRS Cld Top Pressure (CTP) 

- ~15 km 
MODIS MYD06 CTP 

- 5 km, coincident 3x3
- highest CTP reported

Considering observations as 
function of cloud fraction 
shows biases in confident 
(opaque) and uncertain 
(variant) areas of cloudiness1 Jul-30 Sept 2013
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AIRS CTP vs. MODIS High CTP
Comparing:

AIRS Cld Top Pressure (CTP) 
- ~15 km 

MODIS MYD06 CTP 
- 5 km, coincident 3x3
- highest CTP reported

Considering observations as 
function of cloud fraction 
shows biases in confident 
(opaque) and uncertain 
(variant) areas of cloudiness1 Jul-30 Sept 2013
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MODIS CTP 
uncertain
> 700 hPa and 
in low fraction

Conservative in 
areas of low 
fraction

Apparent bias in 
areas of high 
fraction

More low fraction 
observations 
by design

0.0 < N < 0.25    #: 279311 0.25 < N < 0.5    #: 112239

0.5 < N < 0.75    #: 85490 0.75 < N < 1.0    #: 138513

AIRS v. MODIS CTP by Fraction
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Compared against L2 CALIPSO-
CALIOP determined CTP (1 
km, V3-30)

Similar trends, but reduction 
in lower-troposphere 
contamination (600-800 
hPa)

Includes poles, but separation 
was considered
- No distinct polar signals 

Likely sampling issues (spatial 
and temporal)1 Jul 2013 – 28 Feb 2014

AIRS CTP vs. CALIPSO Highest CTP
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Forecast Impact of Cloud Contamination
The misassessment of cloud height can result in the cloud 

signals being erroneously projected on the mass (T & q) 
fields
– This analysis error will then translate into a forecast error

To quantify this source of error:
• Observation Departures (bias corrected)

– Observed minus Forecasted Brightness Temperature (O-F)
• Adjoint-Based Observation Impacts

– A 24 hour forecast error projected onto the observations of its 
initial analysis using the adjoints of the forecast model and 
assimilation system

– The measure is a moist energy norm (u, v, T, ps , qv → J/kg)
– This method is run routinely in GMAO ops at 0000 UTC 
– A negative value equates a reduction in error, so NEGATIVE = 

GOOD
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Adjoint Method for Computing Observation Impact

The adjoint of a data assimilation system allows accurate and 
efficient estimation of the impacts of all observations 
simultaneously on analyses and short-range forecasts

Adjoint
Analysis  
System

Adjoint
Forecast     

Model

Output: Forecast 
Sensitivity to 
Observations

Forecast 
Sensitivity     

to Initial State 

Input:
Forecast

Forward Data Assimilation-Forecast Procedure:

Adjoint Data Assimilation-Forecast Procedure:

Observation Impact

Analysis System 
invisible

Forecast     
Model

invisible

Input:
Observations and 

Background

Forecast  
Initial State

Output:
Forecast

Analysis 
System

Forecast 
Model
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AIRS CTP vs. MODIS High CTP

Clouds classified into (roughly) ISSCP height classifications 
as a function of AIRS Cloud Top Pressure

Mid-Level 
Clouds

700-440 
hPa

Low 
Clouds

1000-700 
hPa

High 
Clouds

440-100 
hPa
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Channel Sensitivity
T High  →  Low  → Window Water Vapor 4μm T AIRS Jacobians for 

temperature 
and water vapor

The top color bar 
will serve as 
reference for 
the remaining 
plots
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Observation Impact – High Clouds

• Negative O-F signal apparent where MODIS/AIRS disagree most towards 
contamination

• Small count relative to total, but show inconsistent impact per observation 
in this region

T High→Low→Window Water 
Vapor

4μm TT High→Low→Window H2Ov 4μm TT High→Low→Window H2Ov 4μm T
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Observation Impact – High Clouds

• High clouds show that even w/ an AIRS low bias (vertically), impact 
is generally show observations reduce error  

• Channels less effected by these high clouds (< 50) show more 
neutral impact – effect of the metric

T High→Low→Window H2Ov 4μm TT High→Low→Window H2Ov 4μm T
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Observation Impact – Low Clouds

• Cloud signal again apparent
• Positive O-F bias in areas of agreement – potentially  a feedback of cloud 

contamination having an effect on bias correction
• Impact per observation strongly negative in areas of cloud contamination

T High→Low→Window Water 
Vapor

4μm TT High→Low→Window H2Ov 4μm TT High→Low→Window H2Ov 4μm T



Global Modeling and Assimilation Office
Goddard Space Flight Center
National Aeronautics and Space Administration

Observation Impact – Low Clouds

• Misrepresentation of low clouds relative to MODIS show clear increase in error for 
channels sensitive to low clouds

• There is a real chance that thin cirrus over small clouds can be a source of error
• Magnitude of total degradation due to clouds becomes much more significant 

w.r.t. overall positive impact

T High→Low→Window Water 
Vapor

4μm TT High→Low→Window H2Ov 4μm TT High→Low→Window H2Ov 4μm T
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AIRS ‘Clear’/MODIS Cloudy Observations

• Cloud signal again apparent, and largest magnitude of total 
degradation

• Warm O-F signal near sfc again 

T High→ Low   →  Window H2Ov 4μm T
M
O
D
I
S
 
CT
P
 
(
h
P
a)
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AIRS ‘Clear’/MODIS Cloudy Observations

T High→  Low →   Window H2Ov 4μm T
M
O
D
I
S
 
CT
P
 
(
h
P
a)

T High→ Low  →   Window H2Ov 4μm T

• Per observation, the degradation is again apparent
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• Observations with notable subscale variability generally degrade, and have 
a negative O-F signal.

• This is using MODIS, which has many of the same limitations as AIRS.  

T High →  Low →  Window H2Ov 4μm T
Impact 
per Ob

O-F

M
O
D
I
S
 δ
C
T
P
 (
L
o
w
 –

H
i
g
h
,
 h
P
a
)

Heterogeneity in AIRS Observations
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Clouds in the Infrared
To further exploit infrared data, the next step is 

to include some characterization of clouds in 
the analysis

Approaches for all-sky situations in the 
microwave are having some success, but the 
nonlinearities of clouds in the infrared make it 
more difficult

Instead of attempting all-sky, initial approaches 
are focusing on the cloudiest observations
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Clear IR Measurement = 
Surface + Σ(Atmospheric Layers)

Cloudy IR Measurement = 
Cloud Top + Σ(Atmospheric Layers above cloud)

Retrieved Cloud Height
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In the cloud height retrieval, a cloud fraction, N,  is 
also solved

Under the graybody assumption, the partially 
cloudy observation can then be considered for a 
single, fractional cloud as:

In the GSI, we can then restructure the H operator 
to include the Cloud Height and Cloud fraction to 
allow for a partially cloudy forward operator (and 
also partially cloudy Jacobians)

Partially Cloudy IR Measurement = 
N * Cloudy IR Measurement  + 

(1 – N) * Clear IR Measurement 

Clouds in the Infrared
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Considering the O-Fs versus cloud fraction, it is seen that the O-Fs are 
closer, but the cold bias is, as expected, amplified for higher 
(colder) clouds

The accuracy of the calculated cloudy radiance is fundamentally 
dependent on the accurate retrieval of cloud height and fraction

Obs minus Forecast (clear) Obs minus Forecast (cloudy)
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Cloudy Infrared Radiance Assimilation
Jacobians are adjusted to move 

sensitivity from below cloud to 
cloud surface

Single footprint assimilation 
shows that the system is 
drawing to the retrieved cloud 
top

– Magnitude is inflated due to 
low observation errors.

Error in CTP will result in an 
erroneous O-F, which then can 
negatively impact the analysis

To compensate, CTP is allowed to 
vary in the minimization as a 
control variable

Uncontaminated
Including Cloud

Cloud Top
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Observation-Centered Control 
Variables

Current GSI implementations consider control variable 
only in terms of grids (2D & 3D) and channel-by-
channel bias predictors

Bias prediction coefficients are of the dimension  
[number of predictors, number of channels]
– each satellite channel on each instrument has its own set 

of predictors (i.e. MetOp_AMSU-A channel 8 will have the 
same set of five coefficients across every footprint globally

Observation-Centered control variables 
– consider a control variable at a footprint location over all 

channels measured at that point 
– Dimension dynamic -> any number of observation-

centered control variables can be appended to the control 
vector

38
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Observation-Centered Control 
Variables

Once developed, the functionality was expanded to 
CTP
– Cloud Fraction still considered constant and set as the 

retrieved value
Jacobians

– In addition to modified ∂TB/∂T(p), ∂TB/∂qv(p), etc., the 
minimization now incorporates the CTP Jacobian, 
∂TB/∂pcld. 

– ∂TB/∂pcld can be directly differentiated from the 
radiative transfer equation (i.e. the appendix of 
Li et al. 2001)

Background error for CTP

39
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Background error for CTP
• Background error for CTP (σB

CTP) was 
considered first in a single-footprint case:
– Initial CTP – 624 hPa
– Initial N – 0.968

• Consider behavior of two values of σB
CTP 

compared to clear-sky observations only and a 
static CTP (no variational CTP)
– σB

CTP = 50 hPa and 5 hPa

40
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Background error for CTP

Clear

Cloudy 
Static CTP 

Cloudy 
varCTP

41
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Background error for CTP
Variational CTP acts as a “sink”, as a function of 
σB

CTP

– As the bkg error is increases, the cloud signal is 
absorbed into the CTP variable

– the solution approaches clear-only result
– As bkg error is decreased, result approaches static CTP

• Expected as CTP is tightly constrained to retrieved guess

This is only for a single footprint.  How does the 
analysis respond to a full suite of observations
– Since only CTP is varying, only consider cloudy IR if 1.0 

> N > 0.9 -> higher confidence in cloud height for 
opaque clouds
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CTP Increments
σB = 50 hPa σB = 5 hPa

On a full analysis, large CTP background error values had a 
negative impact on the convergence of the minimization
– Consistent with Tony McNally’s effort @ ECMWF
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Error ModelσB = f(CP)
CTP Increments

One potential issue involved with this is the use of a single σB
value
– In this study, the real sensitivity we are adding is the temperature 

of the cloud top
– The ∂T/∂pc @ 250 hPa very different than ∂T/∂pcld at 850 hPa
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Advancing the Assimilation Methodology
Cloud-affected infrared radiances are considered as a second 

stream of data
– Each AIRS, CrIS, and IASI footprint is considered twice – once for clear-

sky assimilation and once for cloudy assimilation

Data in the GSI is thinned to a 145 km thinning grid
– Data selection on this grid is key to increasing yields
– For clear-sky assimilation, many tests are performed to get the 

clearest footprint available
– For cloudy assimilation, the “cloudiest” footprint is desired – but what 

does that mean?

It is noted here that “selected” means data that gets past 
thinning.  Data that is “used” is actively assimilated.  Selected 
data can still be excluded by quality control
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Data Thinning and Selection
For AIRS and CrIS, the coldest footprint, as determined by a 

11 μm window brightness temperature, is selected
– This skews selection to heterogeneous scenes, as a flat cloud 

will be warmer than a flat cloud that is under thin cirrus

The IASI data streams (BUFR) include AVHRR cloud 
information
– The number of cloud levels, determined by a clustering 

algorithm, and their fractional coverage is reported
– Clear-sky data thinning uses this data to avoid clouds
– Now, the cloudy radiance assimilation can use this to increase 

the likelihood of selecting homogeneous cloud scenes
• Simply exclude all observations that have more than two cloud clusters
• This would make sense for clear observations as well
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All Selected Data – Cloudy Stream
Selected Data

All Selected Data – Clear Stream

By design, the distributions are shifted towards higher cloud 
retrievals for all four instruments

– In cloudy situations, AIRS and CrIS behave more like each other than the 
IASI instruments

– The comparison of cloud fractions for the two streams is not shown, but 
are consistent in that cloud fraction increases in the cloudy stream
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All Selected Data – Cloudy Stream
Selected Data

All Selected Data – Cloudy Stream

In cloudy selection, IASI is shifted towards opaque, which CrIS and 
AIRS both are more flat across all fractions

– Though non-physical, cloud fractions greater than 1.0 can be retrieved, 
though they cannot be assimilated

– In this approach, opaque observations are considered ideal, so skewing 
the distribution towards opaque is ideal
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Once considering only those that fall within certain thresholds of 
cloud fraction (0.9 – 1.0) and cloud height (200-900 hPa), 
observation only a small fraction of observations considered are 
retained

– The increase generally ranges an increase of 4-8% of total radiances, but 
these percentages can mean different (i.e. no WV channels in cloudy)

All Selected Data – Cloudy Stream
Selected Data and Used Data

All Selected Data – Cloudy Stream
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Spatial Distribution of Assimilated Data
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O-F Distribution
Clearly skewed distribution across 

all instruments
– Cloud Heights skewed high
– Better gross checks needed to 

eliminate long tail
Shift in mode of AIRS vs other 

instruments
The yield of IASI is still larger, near 
the mode, but the tails are larger
– Improvement near the mode 

shows potential benefit of 
cluster analysis

– The overall increase in yield is 
also do to more loose gross 
checks

~840 cm-1

(~12 μm)
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Future Work and Conclusions
The minimum-residual cloud height retrieval seems to be a 

fundemental limitation of all infrared assimilation
– Letting clouds into clear radiance assimilation
– Height characterization alone note enough information for 

cloudy assimilation
– Validation shows that the retrieval is flawed

Clustering algorithms to CrIS, AIRS may be useful
– Develop a preprocessor?  Need to colocate a lot of observations 

from MODIS, VIIRS
– CrIS will eventually get cloud height and fraction information in 

BUFR stream, but that may not be enough for heterogeneity

The first step is to evaluate gross checks – displacement of 
mode and mean will affect bias correction
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