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Reanalysis products from MERRA, NCEP2, NCEP1, and ECMWF were used to force an established ocean
biogeochemical model to estimate air–sea carbon fluxes (FCO2) and partial pressure of carbon dioxide
(pCO2) in the global oceans. Global air–sea carbon fluxes and pCO2 were relatively insensitive to the
choice of forcing reanalysis. All global FCO2 estimates from the model forced by the four different reanal-
yses were within 20% of in situ estimates (MERRA and NCEP1 were within 7%), and all models exhibited
statistically significant positive correlations with in situ estimates across the 12 major oceanographic
basins. Global pCO2 estimates were within 1% of in situ estimates with ECMWF being the outlier at
0.6%. Basin correlations were similar to FCO2. There were, however, substantial departures among basin
estimates from the different reanalysis forcings. The high latitudes and tropics had the largest ranges in
estimated fluxes among the reanalyses. Regional pCO2 differences among the reanalysis forcings were
muted relative to the FCO2 results. No individual reanalysis was uniformly better or worse in the major
oceanographic basins. The results provide information on the characterization of uncertainty in ocean
carbon models due to choice of reanalysis forcing.
Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommon-

s.org/licenses/by/3.0/).
1. Introduction

The oceans play a critical role in the global carbon cycle. More
than 90% of the active non-geological carbon pool resides in the
oceans (Kaufman et al., 1998). Estimates of global primary produc-
tion suggest that the oceans contribute about half (Field et al.,
1998). One quarter (Le Quéré et al., 2010) of the carbon emitted
by anthropogenic sources is thought to be sequestered in the
oceans, annually. Understanding the role of the ocean in the global
carbon cycle is a driving question in modern Earth science. It
requires foremost a geographically-distributed, well-maintained
observational capability. We are fortunate that such a capability
exists or is in development, and that global data sets of ocean car-
bon inventories (Key et al., 2004), partial pressure of CO2

(Takahashi et al., 2006, 2009) and ocean-atmospheric exchange
(Takahashi et al., 2006, 2009) are publicly available.

Global ocean carbon models require external information to
drive the ocean circulation dynamics that determine the
distributions, abundances, and atmospheric exchange of carbon.
Additionally, biological and chemical constituents that play impor-
tant roles in the ocean carbon cycle are affected by ocean circula-
tion. These forcing fields can be from a coupled atmosphere
model or from atmospheric and ocean data. In the latter case, the
data typically come from publicly available reanalysis products
(e.g., Le Quéré et al., 2010; Gorgues et al., 2010; Doney et al.,
2009). It is clear that different ocean models produce different esti-
mates of air–sea fluxes (Khatiwala et al., 2013), but less effort has
been given to the influences of different reanalysis products. These
differences in reanalysis products and their potential effects on
simulated ocean carbon distributions and trends have been cause
for concern by ocean modelers (Le Quéré et al., 2010).

Here we intercompare model air–sea flux estimates and partial
pressure of carbon dioxide (pCO2) from a model forced by four
reanalysis products. These include The Modern-Era Retrospective
analysis for Research and Applications (MERRA; Rienecker et al.,
2011), two from the National Center for Environmental Prediction
(NCEP): NCEP2 (Kanamitsu et al., 2002) and NCEP1 (Kalnay et al.,
1996), and one from the European Centre for Medium-range
Weather Forecasts (ECMWF; Dee et al., 2011). This study provides
an opportunity to evaluate how the differences in reanalysis prod-
ucts propagate through the same ocean biogeochemical model to
affect representations of carbon fluxes and pCO2.
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This effort is potentially important not only to ocean carbon
modelers, but also for reanalysis developers and analysts, satellite
mission conceptual designers, and atmospheric scientists as well.
The objective of this study is to provide quantitative information
on the spatial distributions of air–sea carbon fluxes and ocean
pCO2 globally, regionally, and sub-regionally in a model forced
by the four state-of-the-art, widely used reanalysis products listed
above. Such information can guide scientists and analysts in their
selection, uses, and potential pitfalls of different reanalysis prod-
ucts in the context of ocean carbon models.
2. Material and methods

2.1. Global three-dimensional circulation model

Global ocean carbon dynamics are simulated by the NASA Ocean
Biogeochemical Model (NOBM; Fig. 1). It is a three-dimensional
representation of coupled circulation/biogeochemical/radiative
processes in the global oceans (Gregg et al., 2003; Gregg and
Casey, 2007). It spans the domain from 84�S to 72�N latitude in
increments of 1.25� longitude by 2/3� latitude, including only open
ocean areas, where bottom depth > 200 m. The circulation model is
quasi-isopycnal, with 14 vertical layers, driven by the forcing fields
shown in Fig. 1 (Schopf and Loughe, 1995). It relaxes to sea surface
temperature obtained from MERRA and surface salinity obtained
from the National Oceanographic Data Center (NODC, Conkright
et al., 2002). The biogeochemical processes model contains 4 phyto-
plankton groups, 4 nutrient groups, a single herbivore group, and 3
detrital pools. The phytoplankton groups differ in maximum
growth rates, sinking rates, nutrient requirements, and optical
properties. The 4 nutrients are nitrate, regenerated ammonium, sil-
ica to regulate diatom growth, and iron. Three detrital pools provide
storage of organic material, sinking, and eventual remineralization.

Carbon cycling involves dissolved organic carbon (DOC) and
dissolved inorganic carbon (DIC; Fig. 2). DOC has sources from phy-
toplankton, herbivores, and carbon detritus, and a sink to DIC. DIC
has sources from phytoplankton, herbivores, carbon detritus, and
DOC, and is allowed to exchange with the atmosphere, which can
be either a source or sink. The ecosystem sink for DIC is phyto-
plankton, through photosynthesis. This represents the biological
pump portion of the carbon dynamics. The solubility pump portion
is represented by the interactions among temperature, alkalinity
(parameterized as a function of salinity), silica, and phosphate
(parameterized as a function of nitrate). The alkalinity/salinity
parameterization utilizes the spatial variability of salinity in the
model adjusted to mean alkalinity
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Fig. 1. Interactions among the main components of NOBM, nominal outputs, and forcing
gray boxes. Reanalysis forcing variables are in bold. Surface pressure and precipitable wa
are ignored in this effort.
TA ¼ TA S=S

where TA is total alkalinity and S is salinity. The underscore repre-
sents global mean values. TA is specified as 2310 lE kg�1 (Ocean
Model Intercomparison Project (OCMIP; www.ipsl.jussieu.fr/
OCMIP) and S as 34.8 PSU (global model mean). Since the model
contains nitrate but not phosphate, we estimate phosphate by mul-
tiplying nitrate by 0.1. This is derived from the global mean ratio of
nitrate to phosphate from NODC for their top three standard levels.
The calculations for the solubility pump follow the standards set by
the Ocean Model Intercomparison Project (reference above). We
recognize that this approximation for alkalinity is not optimal, but
the surface results compare favorably with data (see Gregg et al.,
2013). The difference between the model and GLODAP global sur-
face alkalinity is 2.7 lEq l�1 (=0.1%) with basin correlation of 0.95
(P < 0.05) (Gregg et al., 2013). We consider this sufficient for the
present purpose of intercomparing model results from forcing by
different reanalysis products.

We employ a locally-developed lookup table valid over modern
ranges of DIC, salinity, temperature, and nutrients for computa-
tional efficiency, at little cost to accuracy. Air–sea CO2 exchange
as a function of wind uses the Wanninkhof (1992) formulation,
as is common in global and regional ocean carbon models (e.g.,
McKinley et al., 2006). A more complete description of NOBM
can be found in Gregg et al. (2013).

NOBM is spun-up for 200 years under climatological forcing
from each reanalysis. Initial conditions for DIC are derived from
the Global Data Analysis Project (GLODAP; Key et al., 2004). DOC
initial conditions are set to 0 lM. Subsequent tests with non-zero
DOC initial conditions showed negligible differences. Other initial
conditions are described in Gregg and Casey (2007). For MERRA
forcing, the first ten years of the run show a net pCO2 difference
DpCO2 (year 10-year 1) of �0.982 latm, at the first hundred years
the 10-year DpCO2 (year 100-year 91) is 0.413 latm, and at
200 years, the 10-year DpCO2 (year 200-year 191) is 0.102 latm
(Fig. 3). This 200-year model spinup may not be sufficient for full
adjustment of all variables at all depths, but appears satisfactory
for surface pCO2 and nutrients, which is the focus of this effort.
The results from the last year (year 200 of each reanalysis spinup)
are compared with in situ data and with one another.

2.2. Data sets

2.2.1. Forcing data
Forcing data variables are shown in Fig. 1. Monthly climatolo-

gies are used in all cases. All are obtained from reanalysis products
except soil dust (iron), ozone, clouds, and atmospheric CO2. Iron is
ive
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Fig. 2. Pathways and interactions among the components of the biogeochemical processes model, illustrating the interactions with the carbon cycle, comprising dissolved
inorganic carbon (DIC), dissolved organic carbon and exchanges with the atmosphere as a function of the ocean and atmosphere partial pressures of CO2 (pCO2). The biological
pump is represented by phytoplankton, herbivores, nutrients, and detritus.
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Fig. 3. Evolution of pCO2, silicon, and nitrate global surface means over the 200-year spinup.
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derived from soil dust deposition estimates from the Goddard
Chemistry Aerosol Radiation and Transport model (Ginoux et al.,
2001). Ozone is obtained from the Total Ozone Mapping Spectrom-
eter and Ozone Monitoring Instrument and cloud information
(specifically cloud cover and liquid water path) are obtained from
the International Satellite Cloud Climatology Project. Atmospheric
CO2 is from the Lamont-Doherty Earth Observatory (LDEO) data set
(Takahashi et al., 2009), using a mean over the entire range of
observations of 358.7 latm. Although the ocean pCO2 observations
are nominally normalized to the year 2000 (Takahashi et al., 2009),
we keep the uncorrected mean atmospheric value from the data to
represent variability at the time and location of measurement.
However, tests using year 2000-normalized atmospheric pCO2

and MERRA forcing showed a difference in air–sea fluxes of only
0.034 mol C m�2 y�1, or about 10.3%. This produced a slightly
worse comparison with in situ estimates (7.8% as compared to
�2.3%), but for the present purposes consistent atmospheric
pCO2 is the important consideration.

2.2.2. Comparison data
The main output of interest in this effort is the flux of CO2 (FCO2,

notation following Doney et al., 2009), representing the exchange
of carbon between the atmosphere and ocean. Positive air–sea flux
is defined here as upward, indicating a source to the atmosphere.
Additionally we compare with global observations of ocean partial
pressure of carbon dioxide pCO2. Both FCO2 and pCO2 data sets are
obtained as gridded datasets on a 5� longitude by 4� latitude hor-
izontal grid and are surface only. They are obtained from the
Lamont-Doherty Earth Observatory (LDEO) (http://cdiac.ornl.gov/
oceans/LDEO_Underway_Database/index.html; Takahashi et al.,
2009). The FCO2 estimates are derived from (1) the ocean pCO2

data using atmospheric pCO2 to compute DpCO2 which is then nor-
malized to the year 2000, (2) wind speeds from NCEP2 and (3) an
estimate of the gas transfer coefficient (see Takahashi et al., 2009).
Fig. 4. Delineation of the 12 m
In addition to the gridded data sets available from LDEO, ship-
board underway pCO2 data at the location of data measurement,
ungridded, with temporal sampling identified, with sampling gaps
preserved, and inclusive of all years sampled, are available (http://
cdiac.ornl.gov/ftp/oceans/LDEO_Database/Version_2009/). Using
these raw observations we can re-construct the representation of
pCO2 data at our model grid. By sub-sampling the model by the
data locations, we can remove the mismatches due to data scaling,
and produce a less biased, one-to-one comparison. We use these to
compare with co-located, coincident estimates of pCO2 from the
MERRA model forcing version to understand the effects of gridding
and sampling on the global gridded representations of pCO2.

Carbon flux estimates are not available in the ungridded data
from LDEO, but we can estimate them from pCO2 and climatolog-
ical ocean and atmospheric variables using the OCMIP protocols,
similar to the way FCO2 is computed by the model. The required
variables are wind speed, sea level pressure, and atmospheric
pCO2. While all of these are derived from or force the model in
the model derivation of FCO2, we use data climatologies here to
estimate FCO2 from the LDEO pCO2 point measurement data. The
data are taken from LDEO to retain as much consistency as
possible.
2.2.3. Evaluation
Results are evaluated globally and regionally in 12 major

oceanographic basins (Fig. 4) from the forcing by each of the four
reanalysis products. Comparisons are statistical, including differ-
ences between model global and regional means and correlation
analysis. Our emphasis is on large temporal and spatial scale
results, using annual area-weighted means and correlation analy-
sis across the basins (N = 12, with 10 degrees of freedom). We
additionally compare model pCO2 and FCO2 from one of the rea-
nalyses, MERRA, against in situ data sub-regionally to estimate
ajor oceanographic basins.

http://cdiac.ornl.gov/oceans/LDEO_Underway_Database/index.html
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the influences of inherent model biases on the results shown in
the intercomparison of reanalysis products.
3. Results

Global annual mean FCO2 from the model forced by the four dif-
ferent reanalysis products show considerable spatial similarity
(Fig. 5). The difference between the lowest estimate, NCEP2
(�0.276 mol C m�2 y�1) and the highest, ECMWF
(�0.402 mol C m�2 y�1) is about 0.13 mol C m�2 y�1, or about
45%. MERRA forcing is closest to in situ estimates (within
0.008 mol C m�2 y�1, or 2%), with NCEP1 only slightly more distant
(by 0.024 mol C m�2 y�1, or 7.0%). Correlations with in situ esti-
mates across basins are positive and statistically significant
(P < 0.05) for all forcing, with correlation coefficient ranging from
0.73 (MERRA and ECMWF) to 0.80 (NCEP1).

There are, however, substantial differences in basin-scale esti-
mates of FCO2 among the various reanalysis forcings, especially
in the high latitudes and tropics (Fig. 5). In the high latitudes
(>±40� latitude), all the forcings produce strong sinks in the oceans,
in accordance with the in situ estimates, but all are weaker than
the data. The NCEP2 sink in the Antarctic is the lowest
(�0.97 mol C m�2 y�1), representing only about a third the magni-
tude of the next smallest sink (ECMWF). NCEP2 forcing produces
an intensification and expansion of local source regions near 60�S
latitude in the Antarctic (Fig. 6). This counters the amplification
of the sink regions just to the north. MERRA forcing produces the
smallest sink in the North Pacific and North Atlantic basins
(Fig. 5). The weaker sink in the North Pacific can be attributed to
a source region east of the Sea of Okhostk (Fig. 6), and the North
Atlantic to a local source in the Labrador Sea. MERRA-estimated
fluxes in these two basins is about 0.15 mol C m�2 y�1 (39%) lower
in the North Pacific than the strongest sink and 0.33 mol C m�2 y�1

(21%) lower in the North Atlantic. The strongest sink in both cases
is produced by NCEP2.
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Fig. 5. Global and basin annual mean air–sea carbon fluxes (FCO2). The basins are arrang
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In the tropical basins, the estimates of air–sea carbon fluxes by
NCEP2 produce the strongest source in 3 of the 4 major basins
(Fig. 5). Sometime this is closer to the in situ estimates relative
to the other forcings, as in the Equatorial Atlantic, and sometimes
it is a larger departure, as in the Equatorial Indian. The large source
represented by NCEP2 forcing in the Equatorial Pacific is derived
from a very strong local flux along the Peru coast (Fig. 6). Although
a smaller manifestation appears in NCEP1 and ECMWF forcing, it
does not appear in MERRA-forcing, which leads to its representa-
tion of the smallest Equatorial Pacific source. ECMWF departs
strongly from the other forcings in the North Indian, and is nearly
3 times the fluxes estimated by the lowest reanalysis (NCEP1), but
is closer to the in situ estimates (Fig. 5). This stronger source can be
attributed to local intensification offshore of Somalia (Fig. 6),
which feature is either much smaller in the other forcings (NCEP1)
or non-existent (MERRA and NCEP2).

Estimates of FCO2 in the sub-polar basins are more similar
among the forcings than the high latitudes and tropics (Fig. 5),
exhibiting the lowest ranges of estimates of all the basins. ECMWF
is the strongest sink in 4 of the 5 basins, while MERRA forcing is the
lowest in 2 basins (North Central Pacific and Atlantic). All the forc-
ings indicate a much stronger sink estimate in the South Atlantic
and Pacific than the in situ estimates.

Global area-weighted mean partial pressures show similar rela-
tionships among the four reanalysis forcings and with the data
(Fig. 7). The deviations from data are much smaller than the flux
estimates: all are within 1% of data global means, with ECMWF
the outlier at 0.6%. NCEP1 pCO2 is closest to the data, with a differ-
ence < 1 latm, or �0.1%. All forcings also show positive and statis-
tically significant correlations across basins, with values similar to
the fluxes.

On basin scales the pCO2 mean differences between the forcings
and data are smaller, and more consistent with one another than
for the basin fluxes (Fig. 7). The South Atlantic is a notable excep-
tion, which exhibits a departure from the data for all forcings sim-
ilar to the fluxes. NCEP2 forcing is noticeably closer to the data
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pCO2 but it is still low by 26 latm (about 7%). Modeled North
Atlantic pCO2 estimates are high compared to data (maximum of
12 latm, or 3.5%, by ECMWF). The Equatorial Atlantic estimates
are consistent with data (Fig. 7), in contrast to the fluxes (Fig. 5).

Spatial distribution of pCO2 from the different forcings gener-
ally show similar patterns as the air–sea fluxes, but the contrast
between highs and lows is reduced (Fig. 8). ECMWF has the lowest
pCO2 in the southern 60� band where the fluxes are large and posi-
tive, but otherwise the features are comparable.

Selected variables from the reanalyses particularly relevant to
ocean carbon surface fluxes include ice concentrations, SST, and
wind speed, and are shown in Fig. 9. Differences in these reanalysis
variables in the high latitude basins suggest some reasons for the
differences in air–sea flux observed in the biogeochemical model
(Fig. 5). Ice concentrations are similar for all four reanalyses esti-
mates in the North Pacific and Antarctic, but there are some appar-
ent differences in the North Atlantic. There are considerable
differences in SST and wind speed among the four reanalyses for
all the high latitude basins.

For the tropical basins, only SST and wind speed are shown, and
there are considerable differences in the variables among the four
reanalysis products (Fig. 10). NCEP2 is consistently warmer than
the other reanalyses, more than 1 �C above the lowest estimate
in 3 of the 4 basins, and nearly 1 �C in the North Indian. Addition-
ally, NCEP2 always exhibits the highest annual mean wind speeds,
occasionally rising to nearly 1 m s�1 higher than the others. At the
other extreme, MERRA and NCEP1 have nearly identical annual
mean SST and wind speeds in all the tropical basins. ECMWF and
NCEP1 have nearly identical SST in the Equatorial Indian, Pacific,
and Atlantic.

In addition to the full global representations of the model and
the in situ FCO2 gridded, re-sampled, and interpolated climatology
MERRA-Forcing Annual pCO2

NCEP1-Forcing Annual pCO2

Fig. 8. Annual mean pCO2 from the model using fo
from LDEO, we provide the non-interpolated point measurements
and the corresponding model with the sampling biases of the data
in time and space removed (Fig. 11). This provides a more realistic
comparison of the model and data to enable improved evaluation
of model issues. A difference map (Fig. 12) provides an enhance-
ment of the comparison. A side-by-side comparison of pCO2, both
with data sampling biases and without completes the comparison
(Fig. 13).
4. Discussion

4.1. Reanalysis-forcing model results

Global annual mean air–sea carbon fluxes and pCO2 are largely
independent of the choice of reanalysis forcing (Figs. 5 and 7). The
flux estimates are similar, the sign of the fluxes (source or sink) by
basin are identical, and correlations with in situ estimates across
major oceanographic basins are positive and statistically signifi-
cant (P < 0.05) regardless of the reanalysis forcing used. Correla-
tions for pCO2 are similarly positive and significant. The
maximum variability in fluxes is about ±20%, which suggests the
magnitude of uncertainty in ocean carbon models due to choice
of reanalyses.

That global air–sea carbon fluxes and pCO2 are generally similar
regardless of reanalysis forcing is reassuring. It suggests that at the
largest spatial scales, state-of-the-art representations of physical
processes and assimilation approaches embedded in the reanalysis
methods, while quite different among the different reanalyses, pro-
duce consistent results. In essence, this means that important vari-
ables used for ocean carbon model forcing are similar on global
scales, and that whatever important differences there are among
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the four reanalysis products, global ocean carbon mean fluxes and
pCO2 are insensitive to them. This is less sweeping when one con-
siders that only a portion of the vast reanalysis variables produced
are important in ocean carbon modeling, the most important of
which are surface temperature, wind speeds and stresses, and ice
distributions, and when the sensitivities of ocean carbon models
are determined by complex interactions in the model formulations.

Although the global carbon flux and pCO2 distributions are sim-
ilar among reanalyses, there are considerable differences on
oceanographic basin scales. Air–sea carbon fluxes, which, as small
differences between large values of atmospheric and ocean pCO2,
are especially sensitive to small variations in the representation
of atmospheric forcing by reanalysis products. None of the reanal-
ysis products are uniformly superior in all basins, nor are any uni-
formly inferior, as compared to in situ estimates. The differences
among the reanalyses are largest in the high latitudes and the tro-
pics, which incidentally represent the basins of strongest sinks and
strongest sources, respectively.
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Fig. 11. Model and in situ FCO2 (top), and sub-sampled model corresponding to point measurements in situ FCO2 (bottom). The model is represented by the MERRA-forced
version. The model is sub-sampled by month and location to the in situ data to produce a comparable annual mean.
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Fig. 12. Difference in model forcing by the four different reanalysis products and in situ FCO2.
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Fig. 13. Model and in situ gridded pCO2 (top), and sub-sampled model corresponding to point measurements in situ pCO2 (bottom). The model is represented by the MERRA-
forced version. The model is sub-sampled by month and location to the in situ data to produce a comparable annual mean.
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Few of the major departures observed in MERRA forcing, such as
the South Atlantic and Pacific, North Indian, North Central Pacific,
and North Pacific, are rectified by the other reanalysis products
(Fig. 5). ECMWF forcing, however, substantially ameliorates the
departures observed in the MERRA and NCEP forcings in the North
Indian and the Equatorial Pacific.

Attribution of the differences of air–sea fluxes to specific vari-
ables in the reanalysis products is difficult because of the complex-
ity of the ocean carbon cycle. Additionally, differences in annual
mean fluxes shown here can be the result of seasonal differences
in reanalysis products. A complete analysis of the effects of the
reanalysis products and their influences on the representation of
the global ocean carbon cycle is beyond the scope of this paper.
However, it is worthwhile to attempt to relate differences in forc-
ing with differences in fluxes, at least at coarse basin and annual
scales, to assist in understanding how the reanalysis variables are
affecting the observed changes in the representation of the global
ocean carbon cycle.

First, we note that there are really only 6 reanalysis variables
affecting the air–sea fluxes in this biogeochemical model: ice con-
centrations, SST, surface pressure, wind speeds, and the x and y
components of wind stress (Fig. 1). We can partially separate these
into those that (1) affect the circulation, and therefore affect the
biology, chemistry, and physical transfers of carbon in the water
column and producing the surface distributions where the
exchange with the atmosphere occur (SST and wind stress), and
(2) those that directly affect the exchange of carbon between the
ocean and atmosphere (sea ice, wind speeds and pressure). Here
we restrict our investigation to SST, sea ice, and wind speeds. Pres-
sure plays a modest role in the air–sea flux and the differences
among the reanalysis products is relatively small. Wind stresses
are critical drivers of the circulation patterns and vertical
processes, but they operate in complex ways and much of their
influence is reflected in the SST.

Beginning with the high latitudes, the Antarctic basin exhibits a
very large range of estimated fluxes from the different reanalysis
products (Fig. 5), with NCEP2 producing a much lower sink than
the other reanalyses. The NCEP2 reanalysis coincidentally has the
highest SST (>1 �C higher than the lowest from ECMWF), and the
highest wind speeds (1.4 m s�1 higher than the lowest, represented
by NCEP1), as seen in Fig. 6. The higher temperature from NCEP2
coupled with stronger winds is consistent with stronger outgassing
of CO2 in the Antarctic, which would produce a reduced basin scale
sink, as observed here.

In the northern high latitudes, MERRA forcing produces the
weakest sinks, which correspond with relatively low wind speeds
(Fig. 9). MERRA winds are >1 m s�1 lower than the highest winds
in both the North Pacific and North Atlantic. These low winds in
MERRA are consistent with reduced exchange of pCO2 with the
atmosphere and result in reduced sinks of atmospheric carbon.
The relatively high SST of MERRA may also play a role in weaken-
ing the North Atlantic fluxes. Similarly, we note that the strongest
sinks in the North Atlantic are produced by NCEP2 and NCEP1.
NCEP2 has the strongest winds, while NCEP1 has the lowest SST’s.

The tropical basins produce the largest range in air–sea carbon
fluxes among the 4 reanalysis products (Figs. 5 and 6). The most
notable divergences are NCEP2 (strongest source) and MERRA
(weakest source) in the Equatorial Pacific. NCEP2 SST and wind
speeds are both the largest of the reanalyses (Fig. 10). NCEP2 SST
is >1 �C higher than the lowest (ECMWF, although NCEP1 and MER-
RA are consistent to within 0.03 �C), and NCEP2 wind speed is
0.9 m s�1 higher than the lowest, represented by NCEP1. These
high SST’s and wind speeds can be associated with stronger out-
gassing as observed in the fluxes. The converse is true as well:
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NCEP1’s and MERRA’s weaker winds produce lower fluxes, despite
high pCO2 than the data (Fig. 7). A similar series of observations
occur in the Equatorial Atlantic, with NCEP2’s stronger representa-
tion of a source to the atmosphere (Fig. 5) is associated with the
highest SST and wind speed (Fig. 10). The weakest source produced
by MERRA forcing in these two basins is more difficult to attribute
to MERRA’s representation of SST and wind speed.

4.2. Inherent model/data issues

Although not the primary focus of this effort, the intercompar-
ison of simulated fluxes and pCO2 from four different reanalysis
products provides an opportunity to gain insights into inherent
model and data ocean carbon issues. First we note that the reanal-
ysis products are largely not capable of rectifying the major dis-
crepancies between the model and data. Second we note that as
we descend from coarser to finer resolution, the issues become
more important.

For both air–sea fluxes and pCO2, global model agreement with
in situ data is strong, with maximum deviations of 19% for FCO2

and 0.6% for pCO2 among all the reanalysis forcing products (Figs. 5
and 7). Deviations for pCO2 are much smaller than fluxes. Basin
correlations are statistically significant at P < 0.05 for all forcings
for both FCO2 and pCO2, and correlation coefficients range from
0.73 to 0.80.

On regional scales, more model-data deviations are apparent
and they can be large at times. We note particularly the South
Atlantic and to a lesser extent the North Atlantic (Figs. 5 and 7).
For air–sea fluxes, additional problems are seen in the Pacific
basins (except the Equatorial Pacific) and the Equatorial Atlantic.
pCO2 estimates exhibit much smaller discrepancies in the above
basins but not in the North and South Atlantic (Fig. 7). Since the
results from the different forcings only partially alleviate the
model-data differences, we suggest that here the problems arise
in the model formulation and/or the comparison with in situ data.

On smaller scales the discrepancies between model and data are
larger still (Figs. 11 and 12). For the full model domain and inter-
polated in situ climatology (top panels in Fig. 11), noteworthy
deviations are the high source regions in the model in the Southern
Ocean along the 60oS band, high sources along the US/Canada East
and West coasts in the North Atlantic and Pacific, and model sinks
in the southern sub-tropical Atlantic and Pacific.

The 60�S Southern Ocean band of high atmospheric source is
common to all the reanalysis versions, and the discrepancy is par-
tially the result of sampling biases in the in situ data. Public data
sets of pCO2 and FCO2 (Takahashi et al., 2009) are taken from point
measurements in the ocean, gridded to 5� longitude by 4� latitude,
binned to an annual mean climatology, and with residual gaps
filled. Each of these steps potentially introduces a bias in the final
result, and is especially important when comparing to model
annual means, which have no sampling issues. Binning to a coarse
grid reduces variability and over-represents the influences of
observation points closest to gaps. Constructing annual means
where data exist for only a few months creates an unbalanced rep-
resentation, with the sampled months over-represented. If the
sampled months occur at a low or high point in the seasonal cycle,
the problem is exacerbated. Filling gaps, like binning to a coarse
grid, over-represents the influence of observations nearest the gaps
unless methods are actively used to reduce this problem.
Takahashi et al. (2009) used an interpolation scheme based on
assumed advective transport.

When we sub-sample the model to match the point measure-
ment locations and months observed, and construct a model repre-
sentation of data corresponding in time and space to the data, we
see that the areas of high sources along 60�S are considerably
reduced in intensity and extent (Fig. 11). The localized high source
region from longitudes 20�E to 75�E nearly disappears. Now, the
reduction and disappearance does not mean that the model agrees
with data. We note that there is some evidence of outgassing in the
data in this region, such as the portion just north and slightly west
of the Ross Sea, and in the central Atlantic sector. However, the
residual disagreement between the sub-sampled model and data
points to model issues. The outgassing in the model, and to a lesser
extent the data, is intensified in austral autumn and winter. This
corresponds with high pCO2 (data not shown), resulting from con-
vection of deep DIC and low ocean temperatures. The model is not
capable of sequestering carbon uptake and sinking by biological
processes in austral summer deep enough to avoid return to the
surface in local winter. We note that other models exhibit outgas-
sing along this 60�S band as well (e.g., Doney et al., 2009), but they
are admittedly less intense and less widespread than seen here.

A similar explanation helps explain the discrepancies between
the model and data in the South Atlantic. Poor sampling produces
a distorted view of the model-data comparison in the interpolated
representations. In the sub-sampled model, the correspondence is
improved (Fig. 11), although there are mismatches along two
north–south lines toward the eastern portion of the basin. In fact,
the basin mean model-data flux difference here falls from
�1.17 mol m�2 y�1 in the full interpolated data and model to
�0.18 mol m�2 y�1 in the sub-sampled representation.

Data sampling issues also contribute to the discrepancies in the
South Pacific. Here the basin mean model-data flux bias is
�0.45 mol m�2 y�1 for the interpolated comparison (Fig. 5). When
the sampling biases are removed the difference is nearly half at
0.27 mol m�2 y�1.

Model-data biases in the North Atlantic and Pacific are more
complicated. Some of the difference is due to data sampling, as
the LDEO data are missing in the northern Labrador Sea and the
Sea of Okhotsk. But otherwise data sampling in these two basins
is relatively complete spatially and temporally. The near-coastal
source regions in the model near the US/Canada borders are in con-
trast to the data and suggest model formulation issues. Since the
discrepancies appear in all the reanalysis versions (although vari-
able), they are apparently not due to differences in forcing. The
possibility of issues in winds, SST, and ice common across all the
reanalysis products cannot be ignored, but we ascribe (1) excessive
upwelling coupled with excessive deep carbon in the model, (2)
locally high atmospheric pCO2 from fossil fuel burning that is not
represented in the global mean value used, and (3) inadequate
uptake and sequestration of carbon by biological processes.

The Equatorial Atlantic also exhibits large model-data discrep-
ancies in fluxes (Fig. 5). This is one of the most perplexing basins,
since the model pCO2 results, by all the forcings, are consistent
with data: ECMWF and MERRA are within 5 latm (1.2%) while
the two NCEP forcings are within 1 latm (0.2%) (Fig. 7). Fluxes
are a non-linear function of pCO2 (actually delta pCO2), with func-
tions involving wind speed and temperature contributing to the
non-linearity (Wanninkhof, 1992). Small differences in these vari-
ables may produce large changes in the fluxes. It is important to
remember that the LDEO air–sea fluxes are estimates derived from
observed DpCO2 and estimated wind speeds, along with a gas
transfer coefficient (Takahashi et al., 2009). Gröger and
Mikolajewicz (2011) have suggested that the Schmidt number for
flux estimates (involved in the gas transfer coefficient) could have
issues at temperatures > 30 �C, but neither the sea surface temper-
ature climatologies used by LDEO (from Conkright et al., 2002) or
the SST climatologies in our reanalysis data ever exceed this
threshold in the Equatorial Atlantic. Additionally, our use of this
parameter is the same as for the in situ estimates (Takahashi
et al., 2009). As with several other basins, when we account for
sampling, the disparity in fluxes is much smaller. The in situ flux
estimates decline by nearly half, from 0.63 to 0.33 mol C m�2 y�1.
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This produces in situ flux estimates similar to the NCEP2 fluxes
shown in Fig. 5. MERRA-forced model fluxes sampled to the
in situ estimates (Fig. 11) decline only about 0.07 mol C m�2 y�1,
so they remain essentially the same as shown in Fig. 5 for this
basin. This means that when sampling biases are removed, the dif-
ference between MERRA-estimated fluxes and in situ estimates is
about the same as the difference between the model forced by
MERRA and by NCEP2. Residual differences are likely due to wind
speed resolution differences (we interpolate reanalysis data to the
native model grid, 1.25� longitude by 0.67� latitude, compared to
the NCEP2 reanalysis re-gridded to 5� longitude by 4� latitude res-
olution by LDEO). When we interpolate our NCEP2 wind speed
reanalysis data over the LDEO resolution, we find a mean increase
of 1.86 m s�1 in the Equatorial Atlantic, which would lead to
enhanced atmosphere–ocean carbon exchange. Re-gridding can
be sensitive to data frequency distributions, especially in small
basins such as this one. It can also increase the influence of values
over land, which may affect the representation of the mean wind
speeds.

5. Summary and conclusions

Intercomparison of air–sea carbon fluxes and pCO2 spatial dis-
tributions using a single ocean model and four different reanalysis
products shows that global means are insensitive to the choice of
reanalysis product. This suggests that at least for the variables
most important for ocean carbon exchange, i.e., wind speeds, SST,
and ice, the reanalysis products are either in general agreement,
or that the differences among them are relatively unimportant at
the largest spatial scales. This finding is emphatically not true for
regional analyses, where large differences in FCO2 are observed
depending upon the reanalysis product used for forcing. pCO2 dis-
tributions are considerably less sensitive to the choice of reanalysis
product. These findings have important implications for ocean
modelers in choosing reanalysis products: namely that for global
models it does not matter much, but for regional and local model
the selection can have important influences on carbon cycling
and exchange estimates.

The finding that different estimates of air–sea fluxes are pro-
duced by different reanalyses at regional scales reinforces the work
by Otero et al. (2013), who used different reanalysis sources in the
Bay of Biscay. Several other ocean carbon modeling efforts have
utilized versions of NCEP forcing data (e.g., Le Quéré et al., 2010;
Doney et al., 2009; McKinley et al., 2004).

This effort provides a milepost for evaluating the use of differ-
ent reanalysis forcing products for ocean carbon models, at least
in a general sense. The overarching conclusion, i.e., that global esti-
mate of carbon fluxes and pCO2 are insensitive to the choice of
forcing is likely robust. Similarly the other conclusions that region-
ally and sub-regionally the choice of reanalysis has successively
more influence, is also likely to apply to other models as well.
However the nature of the differences and sensitivities is likely
to be different. The difference will be dependent upon the nature
of the model formulation, but we hope the results provided here
will be of help in the selection and use of reanalysis products for
global and regional ocean carbon models.

Acknowledgements

We thank the NASA/MERRA Project, the NOAA/NCEP Project
and the ECMWF Project for the data sets and public availability.
We also thank the Lamont-Doherty Earth Observatory for in situ
pCO2 data and flux estimates. We thank three anonymous review-
ers for insights. This work was supported by NASA Modeling and
Analysis Program (MAP) and Carbon Monitoring System (CMS)
Programs.

References

Conkright, M.E., Garcia, H.E., O’Brien, T.D., Locarnini, R.A., Boyer, T.P., Stephens, C.,
Antonov, J.I., 2002. World ocean atlas 2001, volume 4: nutrients. In: Levitus, S.
(Ed.), NOAA Atlas NESDIS 52. U.S. Government Printing Office, Wash., DC, p. 392.

Dee, D.P. et al., 2011. The ERA-Interim reanalysis: configuration and performance of
the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597.

Doney, S.C. et al., 2009. Mechanisms governing interannual variability in upper-
ocean inorganic carbon system and air–sea CO2 fluxes: physical climate and
atmospheric dust. Deep Sea Res. II 56, 640–655.

Field, C.B., Behrenfeld, M.J., Randerson, J.T., Falkowski, P., 1998. Primary production
of the biosphere: integrating terrestrial and oceanic components. Science 281,
237–240.

Ginoux, P., Chin, M., Tegen, I., Prospero, J.M., Holben, B., Dubovik, O., Lin, S.-J., 2001.
Sources and distributions of dust aerosols simulated with the GOCART model. J.
Geophys. Res. 106, 20255–20273.

Gorgues, T., Aumont, O., Rodgers, K.B., 2010. A mechanistic account of increasing
seasonal variations in the rate of ocean uptake of anthropogenic carbon.
Biogeosciences 7, 2581–2589.

Gregg, W.W., Casey, N.W., 2007. Modeling coccolithophores in the global oceans.
Deep Sea Res. II 54, 447–477.

Gregg, W.W., Ginoux, P., Schopf, P.S., Casey, N.W., 2003. Phytoplankton and iron:
validation of a global three-dimensional ocean biogeochemical model. Deep Sea
Res. II 50, 3143–3169.

Gregg, W.W., Casey, N.W., Rousseaux, C.S., 2013. Global surface ocean carbon
estimates in a model forced by MERRA. NASA Global Modeling and Assimilation
Series, M. Suarez, ed., NASA Technical Memorandum 2012–104606, Vol. 31, 32
pp.

Gröger, M., Mikolajewicz, U., 2011. Note on the CO2 air–sea gas exchange at high
temperatures. Ocean Modell. 39, 284–290.

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M.,
Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W.,
Janowiak, J., Mo, K.C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne,
Roy, Joseph, D., 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Am.
Meteorol. Soc. 77, 437–471.

Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.K., Hnilo, J.J., Fiorino, M., Potter,
G.L., 2002. NCEP-DOE-AMIP-II reanalysis (R-2). Bull. Am. Meteorol. Soc., 1631–
1643.

Kaufman, Y.J., Herring, D.D., Ranson, K.J., Collatz, G.J., 1998. Earth observing system
AM1 mission to Earth. IEEE Trans. Geosci. Remote Sens. 36, 1045–1055.

Key, R.M., Kozyr, A., Sabine, C.L., Lee, K., Wanninkhof, R., Bullister, J.L., Feely, R.A.,
Millero, F.J., Mordy, C., Peng, T.-H., 2004. A global ocean carbon climatology:
results from global data analysis project (GLODAP). Global Biogeochem. Cycles
18. http://dx.doi.org/10.1029/2004GB002247.

Khatiwala, S. et al., 2013. Global ocean storage of anthropogenic carbon.
Biogeosciences 10, 2169–2191.

Le Quéré, C., Takahashi, T., Buitenhuis, E.T., Rodenbeck, C., Sutherland, S.C., 2010.
Impact of climate change and variability on the global oceanic sink of CO2.
Global Biogeochem. Cycles 24, GB4007. http://dx.doi.org/10.1029/
2009GB003599.

McKinley, G.A., Rodenbeck, C., Gloor, M., Houweling, S., Heimann, M., 2004. Pacific
dominance to global air–sea CO2 flux variability: a novel atmospheric inversion
agrees with ocean models. Geophys. Res. Lett. 31, L22308. http://dx.doi.org/
10.1029/2004GL021069.

McKinley, G.A., Takahashi, T., Buitenhuis, E., Chai, F., Christian, J.R., Doney, S.C., Jiang,
M.-S., Lindsay, K., Moore, J.K., Le Quéré, C., Lima, I., Murtugudde, R., Shi, L.,
Wetzel, P., 2006. North Pacific carbon cycle response to climate variability on
seasonal to decadal timescales. J. Geophys. Res. 111, C07S06. http://dx.doi.org/
10.1029/2005JC003173.

Otero, P., Padin, X.P., Ruiz-Villarreal, M., Garcia-Garcia, L.M., Rios, A.F., Perez, F.F.,
2013. Net sea–air CO2 flux uncertainties in the Bay of Biscay based on the choice
of wind speed products and gas transfer parameterizations. Biogeosciences 10,
2993–3005.

Rienecker, M.M. et al., 2011. MERRA – NASA’s modern-era retrospective analysis for
research and applications. J. Climate 24, 3624–3648. http://dx.doi.org/10.1175/
JCLI-D-11- 00015.1.

Schopf, P.S., Loughe, A., 1995. A reduced gravity isopycnal ocean model: Hindcasts
of El Nino. Mon. Weather Rev. 123, 2839–2863.

Takahashi, T., Sutherland, S.C., Feely, R.A., Wanninkhof, R., 2006. Decadal change of
the surface water pCO2 in the North Pacific: a synthesis of 35 years of
observations. J. Geophys. Res. 111, C07S05. http://dx.doi.org/10.1029/
2005JC003074.

Takahashi, T. et al., 2009. Climatological mean and decadal change in surface ocean
pCO2, and net sea–air CO2 flux over the global ocean. Deep Sea Res. II 56, 554–
577.

Wanninkhof, R., 1992. Relationship between wind speed and gas exchange over the
ocean. J. Geophys. Res. 97 (C5), 7373–7382.

http://refhub.elsevier.com/S1463-5003(14)00065-1/h0125
http://refhub.elsevier.com/S1463-5003(14)00065-1/h0125
http://refhub.elsevier.com/S1463-5003(14)00065-1/h0125
http://refhub.elsevier.com/S1463-5003(14)00065-1/h0130
http://refhub.elsevier.com/S1463-5003(14)00065-1/h0130
http://refhub.elsevier.com/S1463-5003(14)00065-1/h0135
http://refhub.elsevier.com/S1463-5003(14)00065-1/h0135
http://refhub.elsevier.com/S1463-5003(14)00065-1/h0135
http://refhub.elsevier.com/S1463-5003(14)00065-1/h0135
http://refhub.elsevier.com/S1463-5003(14)00065-1/h0020
http://refhub.elsevier.com/S1463-5003(14)00065-1/h0020
http://refhub.elsevier.com/S1463-5003(14)00065-1/h0020
http://refhub.elsevier.com/S1463-5003(14)00065-1/h0025
http://refhub.elsevier.com/S1463-5003(14)00065-1/h0025
http://refhub.elsevier.com/S1463-5003(14)00065-1/h0025
http://refhub.elsevier.com/S1463-5003(14)00065-1/h0030
http://refhub.elsevier.com/S1463-5003(14)00065-1/h0030
http://refhub.elsevier.com/S1463-5003(14)00065-1/h0030
http://refhub.elsevier.com/S1463-5003(14)00065-1/h0040
http://refhub.elsevier.com/S1463-5003(14)00065-1/h0040
http://refhub.elsevier.com/S1463-5003(14)00065-1/h0035
http://refhub.elsevier.com/S1463-5003(14)00065-1/h0035
http://refhub.elsevier.com/S1463-5003(14)00065-1/h0035
http://refhub.elsevier.com/S1463-5003(14)00065-1/h0050
http://refhub.elsevier.com/S1463-5003(14)00065-1/h0050
http://refhub.elsevier.com/S1463-5003(14)00065-1/h0050
http://refhub.elsevier.com/S1463-5003(14)00065-1/h0055
http://refhub.elsevier.com/S1463-5003(14)00065-1/h0055
http://refhub.elsevier.com/S1463-5003(14)00065-1/h0055
http://refhub.elsevier.com/S1463-5003(14)00065-1/h0055
http://refhub.elsevier.com/S1463-5003(14)00065-1/h0055
http://refhub.elsevier.com/S1463-5003(14)00065-1/h0060
http://refhub.elsevier.com/S1463-5003(14)00065-1/h0060
http://refhub.elsevier.com/S1463-5003(14)00065-1/h0060
http://refhub.elsevier.com/S1463-5003(14)00065-1/h0065
http://refhub.elsevier.com/S1463-5003(14)00065-1/h0065
http://dx.doi.org/10.1029/2004GB002247
http://refhub.elsevier.com/S1463-5003(14)00065-1/h0140
http://refhub.elsevier.com/S1463-5003(14)00065-1/h0140
http://dx.doi.org/10.1029/2009GB003599
http://dx.doi.org/10.1029/2009GB003599
http://dx.doi.org/10.1029/2004GL021069
http://dx.doi.org/10.1029/2004GL021069
http://dx.doi.org/10.1029/2005JC003173
http://dx.doi.org/10.1029/2005JC003173
http://refhub.elsevier.com/S1463-5003(14)00065-1/h0095
http://refhub.elsevier.com/S1463-5003(14)00065-1/h0095
http://refhub.elsevier.com/S1463-5003(14)00065-1/h0095
http://refhub.elsevier.com/S1463-5003(14)00065-1/h0095
http://refhub.elsevier.com/S1463-5003(14)00065-1/h0095
http://dx.doi.org/10.1175/JCLI-D-11-00015.1
http://dx.doi.org/10.1175/JCLI-D-11-00015.1
http://refhub.elsevier.com/S1463-5003(14)00065-1/h0105
http://refhub.elsevier.com/S1463-5003(14)00065-1/h0105
http://dx.doi.org/10.1029/2005JC003074
http://dx.doi.org/10.1029/2005JC003074
http://refhub.elsevier.com/S1463-5003(14)00065-1/h0165
http://refhub.elsevier.com/S1463-5003(14)00065-1/h0165
http://refhub.elsevier.com/S1463-5003(14)00065-1/h0165
http://refhub.elsevier.com/S1463-5003(14)00065-1/h0165
http://refhub.elsevier.com/S1463-5003(14)00065-1/h0165
http://refhub.elsevier.com/S1463-5003(14)00065-1/h0120
http://refhub.elsevier.com/S1463-5003(14)00065-1/h0120

	Sensitivity of simulated global ocean carbon flux estimates to forcing  by reanalysis products
	1 Introduction
	2 Material and methods
	2.1 Global three-dimensional circulation model
	2.2 Data sets
	2.2.1 Forcing data
	2.2.2 Comparison data
	2.2.3 Evaluation


	3 Results
	4 Discussion
	4.1 Reanalysis-forcing model results
	4.2 Inherent model/data issues

	5 Summary and conclusions
	Acknowledgements
	References


