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ABSTRACT

This study reveals the mathematical structure of a statistical index, �, that quantifies similarity among
ensemble members in a weather forecast. Previous approaches for quantifying predictability estimate
separately the phase and shape characteristics of a forecast ensemble. The diagnostic �, on the other hand,
characterizes the similarity (across ensemble members) of both aspects together with a simple expression.
The diagnostic � is thus more mathematically versatile than previous indices.

1. Introduction

Correlation functions and coefficients have been
used extensively to quantify the phase (correlation)
similarity between time series of ensemble members
(hereafter, EMs). Taylor (1920) first described the
physical concepts, and Wiener (1930) completed the
theory foundations using general harmonic analysis. In
addition, the autocorrelation function is transformed
into the power spectrum through Fourier transform
analysis (Wiener–Khintchine’s formula; Taylor 1938).
Various studies have established and described math-
ematical and physical correlations between two EMs.
These studies have advanced our understanding of such
meteorological phenomena as turbulence and chaos.

Thompson (1957) originally noted the sensitivity of
large-scale atmospheric patterns to initial conditions.

Lorenz (1963) suggested that a nonperiodic evolution
occurs in three types of simultaneous, ordinary, differ-
ential equations, even if initial conditions have subtle
differences. Because of the atmosphere’s chaotic be-
havior, a deterministic numerical forecast with a single
atmospheric initial condition may have limited value
for prediction. An ensemble forecast consisting of a
number of individual forecast simulations, each simu-
lation using slightly different initial conditions, can
gauge and reduce the prediction errors that arise from
chaotic behavior. Miyakoda et al. (1986), for example,
used a global, nine-level general circulation model
(GCM) and found that ensemble mean forecasts, when
validated against observations, had smaller root-mean-
square (RMS) errors and larger anomaly correlation
scores than did individual forecasts. Ensemble forecasts
are a practical approximation of the general stochastic
dynamic prediction method (Epstein 1969); see Lewis
(2005) for further details. The correlations among the
members, the RMS differences between the members,
and the RMS departure from the ensemble mean are all
used to characterize ensemble spread and to estimate
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forecast skill or probability distributions in medium-
range weather forecasts. [Such ensemble forecasts are
provided routinely by meteorological centers such as
the National Centers for Environmental Prediction
(NCEP), the European Centre for Medium-Range
Weather Forecasts (ECMWF), and the Japan Meteo-
rological Agency (JMA; Murphy 1988; Kimoto et al.
1992).] Statistical diagnostics derived from forecast en-
sembles have also been used to estimate potential pre-
dictability at seasonal time scales (Rowell et al. 1995;
Stern and Miyakoda 1995; Sugi et al. 1997; Rowell 1998;
Phelps et al. 2004). For example, Rowell et al. (1995)
examined the impact of internal atmospheric variability
and sea surface temperature (SST) forcing on predict-
ability over tropical North Africa using a signal-to-
noise ratio from analysis of variance (Scheffe 1959).
Shukla et al. (2000) used the signal-to-noise ratio along
with anomaly correlation coefficients to suggest that
winter mean circulation anomalies over the Pacific–
North American region were highly predictable during
years of large tropical SST anomalies.

The individual members of an ensemble of medium-
range or seasonal forecasts can differ in two key ways:
1) in their “shape” by which we mean their mean values
and the amplitudes of their temporal variations, and 2)
in their “phase,” as characterized by their temporal cor-
relation. If all EMs are completely correlated, phase
predictability is by definition perfect, even if mean val-
ues and amplitudes vary between the EMs. In contrast
to the correlation diagnostic, RMS differences can rep-
resent the difference of mean values and amplitudes
among EMs for each time period including the differ-
ence of period characteristics. Therefore the RMS dif-
ferences estimate the “shape predictability” among
EMs over a given period—conceivably, the RMS dif-
ference can be low even if the EMs are completely
uncorrelated. A unified diagnostic for the statistical
evaluation of predictability—one that examines both
the phase and shape elements—is not in standard use.
(Note that throughout this text, the term “predictabil-
ity” is used to describe the degree to which initial con-
ditions affect some aspect of a forecast ensemble, no
matter if the forecast agrees with observations or not.
This is in contrast to “predictive skill,” which implies a
comparison to observations.)

Koster et al. (2000, 2002, hereafter K02) use a statis-
tical index, �, that does measure the degree of similar-
ity between EMs in both phase and shape. According to
K02, � measures the ratio of signal variance to total
variance, much like the aforementioned diagnostic used
by Rowell et al. (1995). Many recent studies (Koster et
al. 2004, 2006; Dirmeyer et al. 2006; Guo et al. 2006)
have used the � diagnostic to estimate the coupling

strength between soil moisture and precipitation vari-
ability. These particular studies were performed as part
of the Global Land–Atmosphere Coupling Experiment
(GLACE), a project sponsored by the Global Energy
and Water Cycle Experiment (GEWEX) and the Cli-
mate Variability program (CLIVAR). Through joint
analysis of the results of a dozen atmospheric general
circulation models (AGCMs), GLACE found large de-
grees of coupling strength (for boreal summer) over the
Great Plains of North America, India, and the Sahel
(Koster et al. 2004).

The present paper provides a description of the
mathematical structure of � to illustrate all elements of
its usefulness for ensemble forecast analysis. Section 2
shows how � is calculated, and section 3 provides two
separate mathematical interpretations of �. The behav-
ior of � is explored in section 4 for some idealized,
hypothetical situations. Section 5 then introduces a new
application of �—its use in evaluating the predictability
among ensemble members in medium-range forecasts.

2. Definition of �

The output (e.g., temperature, precipitation) from an
ensemble forecast can be expressed as a matrix A:

A � �
x11 x12 · · · x1n

x21 x22 · · · x2n

···
···

···
···

xm1 xm2 · · · xmn

�,

where xij is a variable averaged over n time periods ( j �
1, 2, . . . , n) for each of m EMs (i � 1, 2, . . . , m). Two
variances are calculated. The ensemble mean is com-
puted with (1), and the temporal variance of the en-
semble mean (�2

b) is computed with (2) (see Fig. 1a):

bj �
1
m �

i�1

m

xij , �1�

�b
2 �

1
n �

j�1

n

�bj � x�2. �2�

Here, x is the temporal mean of bj, calculated with

x �
1
n �

j�1

n

bj . �3�

Next, the full-sample variance (�2) is calculated across
all time periods and all EMs (Fig. 1b):

�2 �
1

mn �
i�1

m

�
j�1

n

�xij � x�2. �4�
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The statistical index � is then defined as

� �
m�b

2 � �2

�m � 1��2 . �5�

K02 noted that if each EM produces exactly the same
time series, then �2

b equals �2, and � will be 1. In
contrast, if all EMs are completely uncorrelated, then
�2

b approaches (�2/m), and � will be approximately 0.
Thus, outside of sampling error, � varies from 0 to 1.
Values closer to 1 indicate a greater degree of similarity
amongst the EMs.

3. Mathematical analyses of �

a. Mathematical analysis based on idealized
normalizations

This section describes our first interpretation of the
mathematical structure of �. Consider a generalized
case of m EMs, each with n time periods; Xij is a simu-
lated variable (e.g., temperature or precipitation
amount), and Fj is a forcing (e.g., SST or soil moisture)
that varies with time. The Fj time series is the same for
each ensemble member.

Variables Xij and Fj can be normalized as follows:

xij �
Xij � X

�X
, �6�

fj �
Fj � F

�F
, �7�

where X is the temporal ensemble mean of Xij, and F is
the temporal mean of Fj. Also, �X and �F represent the
standard deviations of Xij and F across all time periods
and all EMs.

Consider that the value of any simulated variable xij

is controlled in part by the forcing term fj and by cha-
otic variability, represented by the random normal de-
viate �ij. The variable xij can be rewritten as

xij � �fj 	 
1 � �2� ij . �8�

The term � is effectively the correlation coefficient be-
tween the variable and the underlying boundary forcing
that controls it. By definition,

xi � f � �i � 0 �9�

and

�xi

2 � � f
2 � ��i

2 � 1, �10�

where (9) gives mean values of xi, f, and �i, and (10)
gives their variances.

The variance �2
b of the ensemble mean can be esti-

mated using (1) and (8):

FIG. 1. Two types of variances for calculating statistical index �. (a) The temporal variance
of the ensemble mean (� 2

b) is calculated by time the ensemble mean (bj). (b) The full-sample
variance (� 2) is calculated across all time periods and EMs.
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�b
2 �

1
n �

j�1

n

bj
2

� �2�1
n �

j�1

n

f j
2� 	

2�
1 � �2

mn �
i�1

m

�
j�1

n

fj� ij

	
�1 � �2�

m2n �
j�1

n ��
i�1

m

�ij
2 	 2 �

k�1

m�1

�
l�k	1

m

�kj� lj�.

�11�

Because � ij is a random variable,

�
i�1

m

�
j�1

n

fj� ij � �
j�1

n

fj �
i�1

m

� ij � 0, �12�

�
j�1

n

�kj�lj � 0 for k � l. �13�

Substituting (12) and (13) into (11) and applying (10)
yields

�b
2 �

�2�m � 1� 	 1
m

. �14�

Substitution of �2
b from (14) into (5) yields

� � �2. �15�

Thus, if a simulated variable can be divided into the
forcing (e.g., SST or soil moisture) and random terms
(perturbation of atmospheric behavior) and if the most
simplified normalization is applied, then � is equivalent
to �2. In other words, � represents the square of the
coefficient between the variable of interest and the
boundary forcing. Key to the usefulness of � is that it
can be computed without knowing the particular char-
acter of the boundary forcing that controls the predict-
ability. In other words, f, which might represent a subtle
spatial pattern of the forcing, never needs to be explic-
itly computed.

b. Mathematical analysis with strict normalizations

A second approach can be used to examine �. The
temporal mean (ai) and the temporal variance (�2

ampi
)

of each ensemble member are calculated as follows:

ai �
1
n �

j�1

n

xij , �16�

�ampi

2 �
1
n �

j�1

n

�xij � ai�
2. �17�

Also, note that (2) can be rewritten as

�b
2 �

1

m2 �
k�1

m

�
l�1

m

Rkl � x2, �18�

where

Rkl �
1
n �

j�1

n

xkjx lj . �19�

The mathematical structure of � can be derived for the
strictest mathematical normalization. Consider the nor-
malization of xij by ai and �ampi

, as shown in (20) and
(21):

x �kj �
xkj � ak

�ampk

, �20�

x �lj �
xlj � al

�ampl

. �21�

Substitution of (20) and (21) into (19) yields

Rkl �
1
n �

j�1

n

�akal 	 �ampk
alx �kj 	 �ampl

akx �lj

	 �ampk
�ampl

x �kjx �lj �, �22�

where the sum of x�kj or x�lj across all time periods in
each EM is 0, that is,

�
j�1

n

x �kj � 0, �23�

�
j�1

n

x �lj � 0. �24�

Thus, (22) can be written as

Rkl �
1
n �

j�1

n

�akal 	 �ampk
�ampl

x �kjx �lj �. �25�

Substitution of (25) into (18) yields

�b
2 �

1

m2 �
k�1

m

�
l�1

m

akal � x2 	
1

m2 �
k�1

m

�
l�1

m

�ampk
�ampl

R�kl ,

�26�

where

R�kl �
1
n �

j�1

n

x �kjx �lj . �27�

The first two terms of the right-hand side of (26) can be
defined as I; if (3) is substituted in for x2, then I � 0 and
(26) can be written as
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�b
2 �

1

m2 �
k�1

m

�
l�1

m

�ampk
�ampl

R�kl. �28�

Furthermore, (28) can be rewritten as two terms:

�b
2 �

2

m2 �
k�1

m�1

�
l�k	1

m

�ampk
�ampl

R�kl 	
1

m2 �
k�1

m

�ampk

2

�29�

because R�kk � 1 for all k. Equation (29) can be further
rewritten as

�b
2 � �m � 1

m ��2R� 	
1

m2 �
i�1

m

�ampi

2 , �30�

R� �
2

m�m � 1� �
k�1

m�1

�
l�k	1

m �ampk

�

�ampl

�
R�kl . �31�

The variance of the ensemble mean time series in Fig.
1a is represented by (30), whereas (31) quantifies the
average value of the anomaly cross correlation coeffi-
cients (ACCC) among all EMs, weighted by average
value of the variance ratio (AVR) of �ampk

�ampl
to �2.

Substituting (30) into (5) allows � to be written as

� � R� 	 � 1
m � 1��

1
m �

i�1

m

�ampi

2 � �2

�2 � . �32�

Here, � is seen to consist of two terms. Further details
of the mathematical structure of � can now be re-
vealed. First, note that (17) can be written as

�ampi

2 �
1
n �

j�1

n


�xij � x� � �ai � x��2. �33�

The first term on the right-hand side in (33) is

� i
2 �

1
n �

j�1

n

�xij � x�2, �34�

where �2
i is the variance of each EM about the mean

value x in (3). The second term is

�meani

2 � �ai � x�2, �35�

where �2
meani

is the squared difference of the mean
value ai of each EM to x. Next, (34) and (35) are sub-
stituted into (33) to yield

� i
2 � �ampi

2 	 �meani

2 . �36�

Two terms in (36) relate to the spread among EMs. One
is the variance of each EM relative to its own mean, and
the other relates to the difference between the mean of

the EM and that across all EMs. Substitution of (36)
into (32) yields

� �
2

m�m � 1� �
k�1

m�1

�
l�k	1

m

R�kl

�ampk

�

�ampl

�

	
1

m � 1
�

1
m �

i�1

m

�� i
2 � �meani

2 � � �2

�2 � . �37�

Using (4) and (34) yields

�2 �
1
m �

i�1

m

� i
2. �38�

The above analysis leads to our final expression of �:

� �
2

m�m � 1� �
k�1

m�1

�
l�k	1

m

R�kl

�ampk

�

�ampl

�

�
1

�m � 1�

1
m �

i�1

m

�meani

2

�2 . �39�

The equation is interpreted as follows. The first term on
the right-hand side of (39) represents the ACCC
weighted by the AVR (the “phase” and the main part
of the “shape” similarity). The second term shows the
similarity of the mean values among all EMs (another
aspect of the “shape” similarity). The AVR is affected
both by the mean values and the amplitudes of the
EMs. Thus, correlation (phase) differences and shape
(mean value and amplitude) differences between EMs
both influence the � index.

4. Clarification of the mathematical structure of �

The similarity among ensemble members in medium-
range forecast decreases as time increases by losing the
impact of atmospheric initial conditions. At least three
factors induce this decrease. One is the increase of the
phase difference (hereafter, PD) among EMs (Fig. 2a).
The EMs of a forecast, for example, may predict dif-
ferent time variations of weather conditions even
though they are characterized by the same frequencies
of weather change. The second factor is the mean dif-
ference (hereafter, MD) among EMs (Fig. 2b)—one
EM may predict relatively warm conditions for the
forecast period, whereas the other EMs may predict
cooler conditions. The final factor is the amplitude dif-
ference (hereafter, AD) among EMs (Fig. 2c). For in-
stance, large time variations of temperature may be
predicted by some EMs but not in others.

In this section, we focus on how PD, MD, and AD
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affect �. The effect of each is isolated using hypotheti-
cal time series, as illustrated in Fig. 2.

a. Influence of phase difference

Consider a hypothetical set of EMs that has nonzero
PD but zero MD and AD, as shown in Fig. 3. The time
series in (40) is a sine curve with m EMs; here, n is the

total number of time periods (wavelength), j is the spe-
cific time period, i is the number of EMs (m � 2–16 for
every two steps), and ��1 is the PD in each EM (0–2�):

xij � sin�2�j

n
� �i � 1��	1�. �40�

When (40) is substituted into matrix A, we produce the
functional relationship between � and ��1 shown in

FIG. 3. Schematic figure of EMs in a hypothetical case. All EMs
consist of sine curves, which have PD(��1). There is no MD or
AD among EMs.

FIG. 4. Behavior of � in response to PD(��1) in case of different
sets of EMs (m � 2–16 for every two steps). The abscissa (��1) is
PD among each EM. Time periods (n) are 100. When ��1 equals
�, � approximates 0 with large sets of EMs; � goes between
approximately 0 and 1 when there are a large number of EMs (in
this case, m is 16). When m equals 2, � goes between �1 and 1.

FIG. 2. Schematic diagram for similarities among EMs. It categorizes 3 types: phase, mean value, and
amplitude. (a) Phase difference (PD), (b) mean difference (MD), and (c) amplitude difference (AD).
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Fig. 4. The second term of the right-hand side of (39)
vanishes because the MD for the EMs is zero. The AD
among all EMs is also zero for this idealized case:

�
k�1

m�1

�
l�k	1

m �ampk

�

�ampl

�
� 1. �41�

Substituting (41) into (39) yields

� �
2

m�m � 1� �
k�1

m�1

�
l�k	1

m

R�kl , �42�

which shows how the degree of PD among the EMs
affects �. Figure 4 shows how � varies with PD for each
m considered; � is small for large sets of EMs when ��1

equals �. If there is no PD (PD � 0, 2�) among EMs,
� is 1 regardless of the number of EMs. When m is 2,

� behaves like a cross correlation coefficient; if it is
correlated (uncorrelated), then � approaches 1 (�1).
In contrast, when the number of EMs is large enough
(or, in this case, when m � 16), � is effectively 0 for all
nonzero PD. The value of � is not identically 0 when
PD � � because in this case, �2

b becomes 0, and (5) can
be expressed as

� � �
1

m � 1
. �43�

In this case only, (42) cannot explain �. As a result, Eq.
(42), which measures the phase similarity (correlation),
varies between 0 and 1 for the case of infinite EMs. This
result shows that � can approach 0 from the PD alone.

FIG. 5. Schematic figure of EMs in a hypothetical case. All EMs
consist of sine curves, which have MD (��2). There is no PD or
AD among EMs.

FIG. 6. Behavior of � in response to mean value difference
(MD). The abscissa denotes MD (��2). When ��2 is large (e.g.,
��2 � 5), � varies to approximately 0 with large sets of EMs. �
goes between approximately 0 and 1 when there are fully number
of EMs (m � 16 in this case). When m equals 2, � shows between
�1 and 1.

FIG. 7. Response of the second term of the right-hand side of �
in Eq. (45) to MD (��2). When ��2 is large (e.g., ��2 � 5), �
approximates 0 with large sets of EMs. In case of m � 2, the
second term varies between �1 and approximately 0. Therefore,
this term cannot be negligible. On the other hand, in case of m �
16, the second term is negligible for its small value.

FIG. 8. Schematic figure of EMs in a hypothetical case. Every
EM consists of sine curve with different amplitude. Every EM has
AD (��3). There is no PD or MD among EMs.
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b. Influence of mean value difference

Consider the behavior of � when MD is nonzero but
there is no PD or AD, as shown in Fig. 5. The first term
on the right-hand side of (44) is the mean value of each
EM, and the second term is a simple sine curve:

xij � �i � 1��	2 	 sin
2�j

n
. �44�

Furthermore, i is the index of the ensemble member, j
is the time period number, n is the total number of time
periods, and ��2 is an index of MD among EMs. There
is no PD among EMs in this hypothetical, idealized
case. Therefore, (39) can be written as

� �
2

m�m � 1� �
k�1

m�1

�
l�k	1

m �ampk

�

�ampl

�

�
1

m � 1

1
m �

i�1

m

�meani

2

�2 . �45�

Substitution of (44) into matrix A yields the � values
shown in Fig. 6; the figure plots � versus MD (��2) for
several ensemble sizes (m � 2–16). Figure 7 plots the
second term on the right-hand side of (45) versus ��2.
In both figures, the values approach 0 for large sets of
EMs when ��2 is large (e.g., ��2 � 5). That is, the
impact of the second term on the right-hand side of (45)
is negligible in the case of a large number of EMs, for
which the � equation simplifies to

� ≅
2

m�m � 1� �
k�1

m�1

�
l�k	1

m �ampk

�

�ampl

�
. �46�

When there is no MD between EMs, the second term of
the right-hand side is 0, and � is 1, regardless of m.

FIG. 9. Behavior of � in response to amplitude difference (AD).
The abscissa denotes AD (��3). When ��3 equals 5, � indicates a
large value with a large number of EMs. In case of ��3 � 0, all
EMs show identical amplitude and � becomes 1. � varies between
0 and 1 irrespective of number of EMs.

FIG. 10. Schematic figure of �mn( j). Here �mn( j) is estimated at every time step ( j). Here l: total number of
time periods, m: ensemble members, and n: time periods to estimate �mn( j).
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When m � 2, � approaches �1 as the MD increases.
If there are many EMs (m � 16 in this experiment), �
vanishes with increasing MD.

c. Influence of amplitude difference

Now consider a hypothetical time series of EMs, as in
(47), in which AD is nonzero but PD and MD are zero
(m � 2–16 for every two steps). Figure 8 shows a sche-
matic of (47):

xij � i�	3 sin
2�j

n
. �47�

The time series in (47) is a sine curve with m EMs; here,
��3 is an index that shows the AD among EMs. In this
hypothetical case, (39) can be expressed as

� �
2

m�m � 1� �
k�1

m�1

�
l�k	1

m �ampk

�

�ampl

�
. �48�

Figure 9 plots � versus AD (��3) for several EMs (m �
2–16 for every two steps). The figure shows that when
��3 is moderately small (e.g., ��3 � 5), � increases with
increasing ensemble size. In contrast, � approaches 0
when the amplitudes are quite different amongst the
EMs, despite the zero values of PD and MD. The �

FIG. 11. Time series of 16 EMs of temperature at 500-hPa height
over a grid cell in December (46°N, 180°).

FIG. 12. Time series of �mn( j), ACCCmn( j), and AVRmn( j) of
temperature at 500-hPa height over a grid cell in December
(46°N, 180°). Time period is 3 days (n � 12) for every line. Short
dashed line represents the 92% significance level.

FIG. 13. Time series of 16 EMs of temperature at 500-hPa
height over a grid cell in December (74°N, 96°W).

FIG. 14. Time series of �mn( j), ACCCmn( j), and AVRmn( j) of
temperature at 500-hPa height over a grid cell in December
(74°N, 96°W). Time period is 3 days (n � 12) for every line. Short
dashed line represents 92% significance level.
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values are constrained to lie between 0 and 1 when AD
acts alone.

d. Mathematical characteristics of three indices

Two indices clarify the impact of PD and the joint
impact of MD and AD on the behavior of �. First, (42)
provides the average value of the ACCC. The ACCC
shows the impact of PD on �, regardless of MD and
AD. A second index, defined in (46), is the average
value of the AVR. The AVR indicates the impact of
MD and AD on �, regardless of PD. Here we assume
that there is a large number of EMs and the impact of
the second term in (45) can be neglected.

Note that while the value of � reflects the values of
both ACCC and AVR, there is no simple functional
form relating the three quantities. The ACCC and
AVR are simply presented as the “phase” and “shape”
aspects of �.

To summarize the results of the present section, we
note that two types of statistical differences amongst

ensemble members underlie �: phase differences (PD,
as characterized by the ACCC), and shape differences
(MD and AD, as characterized by the AVR). PD, MD,
and AD affect the value of � in different ways, as il-
lustrated in Figs. 4, 6, and 9. The concepts of ACCC and
AVR will be used extensively in the next section.

5. Predictability among ensemble members in
medium-range forecast using the new estimation
methods

In this section, we use the mathematical structure of
� revealed above to evaluate the predictability among
ensemble members in medium-range forecast from a
viewpoint of similarity. Here the predictability is de-
fined as the impact of initial conditions on atmospheric
behavior. We deal with idealized predictability; we do
not compare the model ensemble results with observa-
tions. In essence, we assume that the model we use is
perfect and that one of the EMs represents “nature”—

FIG. 15. Time series of �mn( j), ACCCmn( j), and AVRmn( j) of temperature at 500-hPa height averaged over
low (0°–30°N), middle (30°–60°N), and high (60°–90°N) latitudes in December. Time period is 3 days (n � 12) for
every line.
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that is, it shows the true evolution of the various atmo-
spheric fields.

a. Model and data

Ensemble numerical simulations were integrated with
the Center for Climate System Research (CCSR; Uni-
versity of Tokyo) and the National Institute for Envi-
ronmental Studies (CCSR/NIES) AGCM (Numaguti et
al. 1997). The CCSR/NIES model used T42 horizontal
truncation (128 � 64 grid cells, approximately 2.8° reso-
lution) and 20 sigma coordinate layers in the vertical.

b. Methodology

Similarity among ensemble members in medium-
range forecast was determined with (49), in which j is
the elapsed time (h), n is the number of periods evalu-
ated at every time step, and m is the number of EMs;
�mn( j) was calculated for all j, as shown in Fig. 10:

�mn� j� �
m�b

2� j� � �2� j�

�m � 1��2� j�
. �49�

The ACCC and AVR for such an analysis can be com-
puted with

ACCCmn� j� �
2

m�m � 1� �
k�1

m�1

�
l�k	1

m

R�kl� j�, �50�

AVRmn� j� �
2

m�m � 1� �
k�1

m�1

�
l�k	1

m �ampk
� j�

�� j�

�ampl
� j�

�� j�
.

�51�

Again, ACCCmn( j) indicates the “phase predictability”
and AVRmn( j) the “shape predictability” among en-
semble members. As the single statistical quantity that
includes both phase and shape predictability, �mn( j)
indicates “similarity predictability.”

c. Grid scale

Figure 11 shows the time series of temperature at 500
hPa produced by 16 EMs (m � 16) at a specific grid cell
(46°N, 180°) in December. The 16 sets of 1 December
atmospheric initial conditions used were constructed
with the 1-h lagged approach. All data in Fig. 11 are
averaged over 6 h. Figure 12 shows time series of
�mn( j), ACCCmn( j), and AVRmn( j) as calculated from
the 16 EMs. Every point of each line was calculated
from 3 days of data (n � 12). Here ACCCmn( j) was
approximately constant (and thus showing stable phase
predictability) at 0.7 until day 12, and AVRmn( j) was
nearly constant around 0.9 until day 12; thus, large pre-
dictability for shape also persisted. Large predictability

for both phase and shape was equivalent to a large
value of �mn( j).

After day 12, �mn( j) and ACCCmn( j) decreased to
values less than 0.05, a decrease significant at the 92%
level, according to Monte Carlo analysis; AVRmn( j)
also decreased at this time, but the decrease was
much smaller than that for ACCCmn( j). The impact of
ACCCmn( j) on �mn( j) was therefore dominant. After
losing shape predictability around day 14, AVRmn( j)
fluctuated between 0.3 and 0.6. By this time, the impact
of the initial conditions on the forecast had disap-
peared.

Note that physical constraints on meteorological
fields limit the degree to which AVRmn( j) can be re-
duced. In both the real world and models, tempera-
tures, for example, will not vary by the amounts needed
to reduce AVRmn( j) to 0. Thus, our use of the term
“shape predictability” throughout this text when refer-
ring to AVRmn( j), though convenient, is not rigorously
correct; in the strictest sense, “shape predictability”
would refer to the degree to which the AVRmn( j) ex-
ceeds the lower limit. In any case, for the grid cell ex-
amined in Fig. 11 and 12, large decreases in both
ACCCmn ( j) and AVRmn( j) induce the large decrease
in �mn( j) at day 12—chaos destroys both the phase and
shape similarity at approximately the same time.

Figure 13 presents the time series of 500-hPa tem-
perature at a different grid cell (74°N, 96°W). As shown
in Fig. 14, the corresponding �mn( j) and ACCCmn( j)
values show large decreases after day 5. The decease
in �mn( j) is in fact significantly larger than that in
ACCCmn ( j) due to a sharp decrease in AVRmn( j). At
high latitudes, SST has a small impact on atmospheric

FIG. 16. Time series of �mn( j), ACCCmn( j), and AVRmn( j) of
temperature at 500-hPa height averaged over globe in December.
Time period is 3 days (n � 12) for every line.
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FIG. 17. Global distributions of (a) �mn( j), (b) ACCCmn( j), and (c) AVRmn( j) of temperature
at 500-hPa height on 10 December All figures are calculated with 12 time periods (3 days).
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behavior, especially during winter. This may explain the
sharp decrease in AVRmn( j). Here, predictability de-
creased not only because of an increase in PD but also
due to increases in MD and AD.

d. Zonal mean

Figure 15 shows (a) �mn( j), (b) ACCCmn( j), and (c)
AVRmn( j) for 500-hPa temperature at low, middle, and
high latitudes. In all figures, dotted, solid, and dashed
lines indicate zonal averages between 0° and 30°N, be-
tween 30° and 60°N, and between 60° and 90°N, respec-
tively.

Consider the behavior of ACCCmn( j) in Fig. 15b. On
day 2, the high-latitude average value is larger than that
at other latitudes. However, phase predictability is lost
first at high latitudes, with values decreasing to 0.05 on
day 16. In contrast, low-latitude values are initially
about 0.65, but the phase predictability there persists
until day 24. Midlatitude phase predictability shows the
largest value from day 7 to 15 among the three latitu-
dinal bands and lasts until day 17.

Figure 15c shows AVRmn( j) for the three latitudinal
bands. All three lines show similar values in the first
few days, implying that shape predictability at early
times has no latitudinal dependence; AVRmn( j) at high
latitudes, however, decreases first and then stabilizes
after day 16. At mid- and low latitudes, the values take
much longer to decrease. Comparison of Fig. 15b and
15c shows that phase and shape predictability vanish at
high latitudes simultaneously. In lower and midlati-
tudes, however, shape predictability persists for several
days after phase predictability is lost. Thus, at these
latitudes, the effects of atmospheric chaos differ for
phase and shape.

Figure 15a shows �mn( j), the measure of comprehen-
sive predictability, as a function of time at low, middle,
and high latitudes. The relative positions of the lines in
Fig. 15a look very similar to those for ACCCmn( j) in
Fig. 15b. At all three latitudes, however, note that
�mn( j) reached 0.05 between days 13 and 16, somewhat
earlier than did ACCCmn( j).

e. Global mean

Figure 16 shows �mn( j), ACCCmn( j), and AVRmn( j)
for 500-hPa temperature averaged worldwide in De-
cember. Here �mn( j) decreases with time and reaches
0.05 on day 15. Therefore, by this measure, predict-
ability has a time scale of 15 days. Predictability for
ACCCmn( j), however, persists for more than 5 days
longer. After a sharp decrease, AVRmn( j) shows stable
values of about 0.3 starting at day 20. Figure 16 shows
nearly constant differences between �mn( j) and

ACCCmn( j) at every time period, suggesting that the
impact of MD and AD on predictability at global scales
does not vary with time.

f. Global distribution

Figure 17 shows global distributions of �mn( j),
ACCCmn( j), and AVRmn( j) for 500-hPa tempera-
ture on day 10. Values are calculated with 12 time
periods from day 9 to 11. Large values of both
ACCCmn( j) and AVRmn( j) occur over midlatitudes, es-
pecially over the oceans. The regional distributions re-
semble strong westerly jets in which long-period waves
dominate atmospheric behavior. The large values of
ACCCmn( j) and AVRmn( j) in certain regions lead to
correspondingly large values of �mn( j) in these regions.
Predictability can be maintained not only for PD but
also for MD and AD in midlatitudes.

At high latitudes, however, ACCCmn( j) and
AVRmn( j) are small, and thus �mn( j) is also small. At
low latitudes, relatively large values of AVRmn( j) per-
sist on day 10. In contrast, small values of ACCCmn( j)
occurred over many tropical regions, and �mn( j) is
small there, with values between 0 and 0.2. Thus, in the
Tropics, similarity predictability is lost due to PD
among EMs. The factors that reduce predictability are
seen to have a latitudinal dependence.

6. Summary

Two interpretations of the mathematical structure of
the statistical similarity index � are provided. The first
interpretation shows that, under the assumption that
both boundary forcing and atmospheric chaos contrib-
ute separately to the value of a meteorological variable
at a given time step, � is equivalent to the square of the
correlation coefficient between the variable and the
forcing. The nature of this boundary forcing, which pre-
sumably is multivariate and multifaceted, need not be
established or understood for the calculation of �.

The second interpretation, the mathematically
stricter one, shows � to be associated with two quanti-
ties: the average value of the anomaly cross correlation
coefficient (ACCC) and the average value of the vari-
ance ratio (AVR) amongst the EMs. The second term
indicates one part of the similarity of mean values
amongst the EMs, but this term could be negligible for
large numbers of EMs, and thus the first term domi-
nates the behavior of �. The statistical characteristics of
� suggest that � reflects both phase similarity (corre-
lation) and shape similarity (mean value and ampli-
tude). It thus has an advantage over both the cross
correlation coefficient, which shows similarity of phase
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but not shape among EMs, and the root-mean-square
(RMS) difference, which indicates similarities in shape
including the effect of period characteristics.

Skill in ensemble weather forecasts is typically esti-
mated with anomaly correlations or RMS differences.
Even if large predictability for shape is estimated with
the RMS difference, such skill may not be practical or
reliable in the face of small predictability for phase
similarity. The converse is also true. This paper suggests
that by characterizing phase and shape predictability
jointly, the �mn( j) diagnostic may be a superior pre-
dictability measure. In addition, this study shows that
relative losses (with time) in phase and shape predict-
ability vary with latitude. As we described in section 5,
this study does not deal with real predictability but ide-
alized predictability by assuming that the model is per-
fect and that one of the EMs represents “nature.” How-
ever, it may be mathematically possible to estimate the
real predictability with �mn( j) by calculating the
anomalies of each EM compared with observation data.
The predictability depends on which time scale we fo-
cus on; �mn( j) can be evaluated for any averaging time
scale, and this can be one of the suitable characteristics
to estimate the predictability. Overall, �mn( j) is seen to
be a highly practical and versatile tool for the analysis
of ensemble weather forecasts and perhaps for other
scientific and technological applications as well.
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