Extreme precipitation in the southern US Great Plains in the spring of 2015: mechanisms and prediction
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Overview Exploring the remote drivers of the event with model simulations
. . . 1. AGCM analysis 2. Stationary wave model analysis
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Modest skill for leads ~10-30 days, a consequence of skill in predicting tropical precipitation and circulation. Position of US precipitation anomalies less skillful.
Which caused
enhanced water

vapor transport Moving forward
from the Gulf of
Mexico « Clarify the role of the extratropical upstream forcing (e.g., over the Pacific) in shaping the circulation pattern over the US. What role did internal variability play?

 Look more closely at subseasonal forecasts. What can we learn from intra-ensemble forecast spread”? What causes different anomaly patterns across models/members?
 Examine the event in a broader context. How common are wave trains like that in May 20157 Are such events forecasts of opportunity? How can forecasts be improved?
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