

Introduction

- **Developers of Atmospheric River Detection** Tools (ARDTs) submitted binary tags of ARs in MERRA-2, ERA5, JRA-55 for the period of January 1980 through December 2019
- JRA-55 (all years) and ERA5 for 1980 through 1999 were optional
- Consensus AR = AR detected by at least 50% of ARDTs
- Science Questions:
- How does the uncertainty in AR frequency among reanalyses compare to uncertainty in ARDTs?
- How are diagnostics variables, such as Tabprecipitationatimpacteditby AR detection/sis Intercomparison. *Included full ERA5 period. *Included JRA-55

Algorithm	Participant	Region
ARCONNECT_v2 ⁺	Eric Shearer	Global
ClimateNet_DL	Sol Kim	Global
GuanWaliser_v2* ⁺	Bin Guan	Global
IDL_v2b ^{*†}	Ricardo Tomé	Western Europe, South Africa
Lora_v2	Juan Lora	Global
Mundhenk_v3*+	Kyle Nardi	Global
Payne ^{*†}	Ashley Payne	Western US
Reid500 ^{*†}	Kimberley Reid	Global
Shields_v1*	Christine Shields	Western US, Western Europe
TempestLR* ⁺	Beth McClenny	Global, except 15 S to 15 N
Wille_v2.4*	Jonathan Wille	Arctic, Antarctica

Conclusions

- Enhanced water vapor transport in MERRA-2 leads to increased detection of ARs in ARDTs with fixed thresholds
- Uncertainty due to ARDT is greater than uncertainty due to reanalysis except for the seasonal cycle of percent area
- Consensus ARs result in more precipitation due to ARs than the ensemble mean in the Pacific Northwest

An Overview of ARTMIP's Tier 2 Reanalysis Intercomparison: Uncertainty in the Detection of Atmospheric Rivers and their Associated Precipitation **Global Modeling & Assimilation Office** Allison Collow^{1,2}, Jon Rutz³, Christine Shields⁴, Mike Wehner⁵, Ruby Leung⁶, Marty Ralph⁷, Ashley Payne⁸, and Travis O'Brien⁹

Results: AR Detection Frequency

Annual AR Frequency in MERRA-2 - ERA5 (%)

Figure 2: Frequency of agreement in the detection of a consensus AR in (a) MERRA-2 and ERA5, (b) MERRA-2 and JRA-55, (c) ERA5 and JRA-55 and (d) all three reanalysis as well as the frequency of a consensus AR detected in (e) ERA5 or (f) JRA-55 but not MERRA-

- Maximum frequency of disagreement aligns with gradients in the AR track
- ERA5 has additional ARs to the north, while the pattern for
- disagreement in JRA-55 suggests ARs
- propagate at differing speeds or there are issues with differing temporal resolutions

Figure 1: (a) The annual AR frequency of occurrence in MERRA-2 and the difference from (b) ERA5 and (c) JRA-55 as demonstrated by all contributing algorithms as well as the ensemble mean and standard deviation. White shading indicates no data areas for

- MERRA-2 due to the presence of more water vapor within the

both hemispheres, perhaps due to geometry requirements

National Aeronautics and Space Administration

