Designing an optimal ensemble strategy for GMAO S2S forecast system

Anna Borovikov!<, Siegfried Schubert?, Jelena Marshak Global Modeling & Assimiation Office
(1) NASA Global Modeling and Assimilation Office, Goddard Space Flight Center, Greenbelt, MD, USA (2) Science Systems and Applications, Inc., Greenbelt, MD, USA 923

Why do we need new ensembles for Subseasonal-to-Seasonal forecasts? Spatial patterns of perturbations. Span all scales. Stratified sampling. KMEANS. Quantifying the results.
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