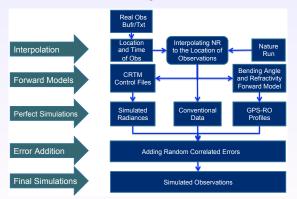


The OSSE Framework at the NASA Global Modeling and Assimilation Office (GMAO)

Isaac Moradi^{1,2}, Nikki Prive^{1,3}, Will McCarty¹, Ronald M Errico^{1,3} and Ron Gelaro¹ ¹Global Modeling and Assimilation Office (GMAO), GSFC, NASA, Greenbelt, MD 20771 ²University of Maryland, College Park, MD, 20740; ³GESTAR/Morgan State University



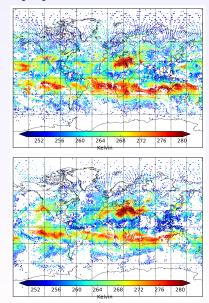
Summary

The Global Modeling and Assimilation Office (GMAO) has been developing an Observing System Simulation Experiment (OSSE) framework. The OSSE system is currently based on the Nature Run (NR) developed by GMAO called G5NR. The G5NR is currently being tested for use in the GMAO OSSE framework. Synthetic observations have been generated based on the G5NR fields, including conventional observations, GPS, and satellite radiances. These synthetic observations are ingested using the Gridpoint Statistical Interpolation data assimilation system, with forecasts performed by the GEOS-5 model at 55 km/72L.

OSSE Experiments

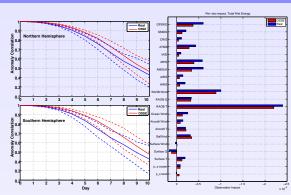
Some recent improvements to the GMAO OSSE framework include the easier user control of options via resource files, removal of some bugs, optional output of additional diagnostics, and simplification of scripts. The new codes avoid rereading of the G5NR data sets when generating synthetic observations and use ESMF Shared Memory to accommodate large datasets. The selection of observation error correlation functions has also been generalized.

Schematic Description of Simulating Synthetic Observations by the GMAO OSSE Package.

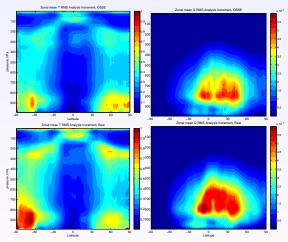

GMAO OSSE Components

The GEOS-5 Nature Run (G5NR) A 2-year global, non-hydrostatic mesoscale simulation with a 7 km horizontal resolution.

A Package to Simulate Observations G5NR is interpolated to the location of


real observations then satellite radiances and GPS bending angles are simulated

- **Error Addition/Tunning** Realistic errors are added to the synthetic observations based on O F differences
- **GEOS-5/GSI DA System** Currently GSI as data assimilation system and GEOS-5 as the NWP model
- **CRTM Coefficient Training** New capability to be able so simulate satellite radiances for future instruments
- **Generation of Real-ish Obs** Hyperspectral obs are used to generate semi-real IR obs for proposed instruments



Real (top) versus simulated (bottom) observations for an infrared instrument.

Evaluation of the OSSE System

Anomaly correlation (left) and observation impact per obs (right) for both OSSE and Real systems.

Observation increments (analysis minus background) for temperature (left) and specific humidity (right) for the OSSE (top) and real (bottom) observations.

!	The GMAO OSSE framework is an ongoing project and up- dated results are presented regularly at different meetings.				
This work was supported by the NASA Global Modelling and Assimilation Office (GMAO). Computing resources are made available by the NASA NCCS. For more information visit the GMAO website: \Downarrow or \Longrightarrow					
https://gmao.gsfc.nasa.gov/					

