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Quantification of global land evapotranspiration (ET) has long been as-4

sociated with large uncertainties due to the lack of reference observations.5

Several recently developed products now provide the capacity to estimate6

ET at global scales. These products, partly based on observational data, in-7

clude satellite-based products, land surface model (LSM) simulations, atmo-8

spheric reanalysis output, estimates based on empirical upscaling of eddy-9

covariance flux measurements, and atmospheric water balance datasets.10

The LandFlux-EVAL project aims to evaluate and compare these newly11

developed datasets. Additionally, an evaluation of IPCC AR4 global climate12

model (GCM) simulations is presented, providing an assessment of their ca-13

pacity to reproduce flux behavior relative to the observations-based prod-14

ucts. Though differently constrained with observations, the analyzed refer-15

ence datasets display similar large-scale ET patterns. ET from the IPCC AR416

simulations was significantly smaller than that from the other products for17

India (up to 1 mm/d) and parts of eastern South America, and larger in the18

western USA, Australia and China. The inter-product variance is lower across19

the IPCC AR4 simulations than across the reference datasets in several re-20

gions, which indicates that uncertainties may be underestimated in the IPCC21

AR4 models due to shared biases of these simulations.22

Science, ETH Zurich, Zurich, Switzerland.
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1. Introduction

Land evapotranspiration (ET) is a common component in the water and energy cycles,23

and provides a link between the surface and the atmosphere. Accurate global-scale esti-24

mates of ET are critical for better understanding climate and hydrological interactions.25

Local scale ET observations are available from the FLUXNET project [Baldocchi et al.,26

2001]. However, dense global coverage by such point measurements is not feasible and27

the representativeness of point-scale in-situ measurements for larger areas is a subject of28

active research.29

To address this limitation, several alternative global multi-year ET datasets have been30

derived in recent years. These datasets include satellite-based estimates, land surface mod-31

els driven with observations-based forcing, reanalysis data products, estimates based on32

empirical upscaling of point observations, and atmospheric water balance estimates. The33

LandFlux-EVAL project (see www.iac.ethz.ch/url/research/LandFlux-EVAL) aims at34

evaluating and comparing these currently available ET datasets. The effort forms a key35

component of the Global Energy and Water Cycle Experiment (GEWEX) LandFlux ini-36

tiative, a GEWEX Radiation Panel program that seeks to develop a consistent and high-37

quality global ET dataset for climate studies. Knowledge of the uncertainties in available38

ET products is a prerequisite for their use in many applications, in particular for the39

evaluation of climate-change projections [e.g. Boe and Terray , 2008; Seneviratne et al.,40

2010]. We provide here an analysis of 30 observations-based multi-year global ET datasets41

2LERMA, Observatoire de Paris, Paris,
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for the 1989–1995 time period, focusing on inter-product spread in various river basins.42

In addition, we analyze ET in 11 coupled atmosphere-ocean-land GCMs from the IPCC43

Fourth Assessment Report (AR4). A complementary analysis for a three-year period44

(1993–1995) by Jimenez et al. [2010] focuses on sensible and latent heat fluxes in a subset45

of twelve satellite-based, LSM and reanalysis datasets.46

2. Data and Methods

The analyzed datasets are subdivided into four categories (Table 1). In the ’diagnostic47

datasets’ category, we include datasets that specifically derive ET from combinations of ob-48

servations or observations-based estimates, together with relatively simple or empirically-49

derived formulations. The remaining categories provide ET estimates as a byproduct. The50

second category includes LSM products driven with observations-based surface meteoro-51

logical data, while the third includes several atmospheric reanalyses. These first three52

categories are referred to collectively as ’reference datasets’ in the context of assessing the53

IPCC AR4 estimates. IPCC AR4 simulations from 11 GCMs form the fourth category.54

An overview of the datasets can be found in Table 1. For a detailed description, the reader55

is referred to the auxiliary material.56

The subdivision of the datasets in the first three categories is somewhat arbitrary, since57

they are all based to some degree on observations and modeling assumptions. Thus, it58

cannot be inferred a priori that one category of datasets may be closer to actual ET.59

In addition, several datasets are not independent, since they use common calibration or60

forcing datasets, and/or common model assumptions (ET parametrization).61

France.
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The analyses are performed for the common period 1989–1995. The calculation of62

the interquartile ranges (IQR) and standard deviations presented below are based on63

the categories (see Table 1), giving each dataset equal weight. Only land pixels that64

are common to all datasets (excluding Greenland and the Sahara, where ET values are65

generally low) are considered for the analyses.66

3. Results and Discussion

3.1. Annual means and global patterns

Figure 1 (a) displays the mean annual land ET values of each analyzed dataset, as well67

as the means and the standard deviations within each category. The values are around68

1.59 +/-0.19 mm/d (46 +/-5 Wm−2), a value close to the reanalyses estimates given in69

Trenberth et al. [2009] for two different time periods. The standard deviation of the IPCC70

AR4 simulations (0.16 mm/d or 4.6 Wm−2) is lower than those of the reference datasets71

(standard deviations ranging from 0.17 to 0.19 mm/d or 4.9 to 5.6 Wm−2). The standard72

deviation of the GSWP LSMs is still smaller (0.12 mm/d or 3.6 Wm−2) than that of the73

IPCC AR4 simulations.74

Global patterns of ET for 1989–1995 are displayed in Figure 1 (b–p). The mean values75

of the four categories (first column) reveal high congruence (for example high ET in the76

tropics, and lower ET in higher latitudes), and nearly no regions with significant differences77

(5% Level, Wilcoxon Rank-Sum Test) are found in respective comparisons with the mean78

of all reference datasets (third column), except for the IPCC AR4 category. In this79

3now at Center for Climate Systems
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category, the ET values compare well with the reference datasets in many regions (1k–o),80

but ET values are significantly lower in the IPCC AR4 simulations in India and South81

America, and significantly higher in semi-arid regions such as western Australia, western82

China and the western USA. Overall, the IPCC AR4 simulations appear to underestimate83

ET gradients within continents (e.g. in North and South America, in Asia north and84

south of the Himalaya, and in Australia), which could be related to the generally coarse85

resolution of the models.86

The relative IQR (IQR divided by the median, second column) of the LSMs is lower87

than those of the other categories in Australia and in tropical regions, probably because88

many of the LSMs share a common forcing (GSWP, GLDAS), but higher in e.g. most of89

Europe. The IQR of the diagnostic datasets is, compared to the other reference datasets,90

high in e.g. Australia, and southern and central Africa, but much smaller in Europe.91

The IPCC AR4 simulations display higher inter-model deviations than the reference92

datasets in semi-arid regions such as Australia, India, South Africa, and parts of the93

Tibetan plateau (1l,o). Accordingly, the IQR of the models in these regions (1p) is much94

higher. On the other hand, some regions show markedly less inter-model spread across95

the IPCC AR4 simulations than would be expected based on the uncertainties inferred96

from the reference datasets (e.g. tropical Africa, East Asia, central Europe, eastern USA).97

Thus, climate models may share common biases in these regions, either related to biases98

in forcing (precipitation, clouds, radiation) or in the representation of land hydrology.99

Modeling, ETH Zurich, Zurich, Switzerland.
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3.2. Basin-scale analysis

Multi-year ET values of all analyzed datasets are displayed in Figure 2 as the devia-100

tion from the reference datasets’ mean for selected basins (Mississippi, Amazon, central101

European basins, Volga, Nile, Changjiang, Murray-Darling). The catchment definitions102

from Hirschi et al. [2006] are used for the computation (see Figure 2 bottom). Plots for103

individual seasons (May to June (MAM), June to August (JJA), September to November104

(SON), and December to February (DJF)) are provided in the auxiliary material. Datasets105

are sorted into the four categories (separate bars). Additionally, ET estimated from the106

difference between precipitation (P) derived from the Global Precipitation Climatology107

Project (GPCP) and runoff (R) from local measurements is shown for multi-year means108

(ET=P−R is not generally valid for shorter time scales) in the Mississippi, central Eu-109

ropean, Volga, Changjiang and Murray-Darling basins. The P−R values can be seen as110

a long-term constraint on ET (indicated with red lines where available), although multi-111

year anomalies of terrestrial water storage cannot be excluded in some regions. Overall,112

the P−R values are found to be close to the reference datasets in the Mississippi, central113

European and Murray-Darling basins.114

The absolute intra-category spreads are largest in the Amazon basin, where the highest115

ET rates occur. The second largest spreads are found in the Murray-Darling basin during116

SON and DJF, most pronounced in the IPCC AR4 simulations (see auxiliary material).117

Comparing the four dataset categories, the intra-category spreads are similar. However,118

4MeteoSwiss, Zurich, Switzerland.
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the values can differ largely between basins. In the Changjiang basin for example, the119

reanalyses and IPCC AR4 simulations display notably higher ET rates than the other120

dataset categories (up to 0.75 mm/d on average during MAM; see auxiliary material).121

The intra-category spreads of the IPCC AR4 simulations are much larger than the other122

categories in the semi-arid Nile and Murray-Darling basins. ET is water (precipitation)123

limited in these regions, and since the calculation of ET in the IPCC AR4 simulations124

is based on modeled precipitation (as compared to observed precipitation in the case125

of reference datasets), the high variability of ET may be partly explained by the large126

uncertainties in modeled precipitation.127

Despite overall similarities of the ET values within these analyzed dataset categories,128

individual datasets stand out in some regions and seasons. For example, during MAM129

and in the annual mean, the NCEP reanalysis exhibits above average ET values in the130

Mississippi, central European, Volga and the Amazon basins. The GFDL IPCC simulation131

stands out in the Amazon basin during SON (auxiliary material). Note that outliers132

among the reference datasets are not necessarily erroneous. Indeed, congruence across133

ET datasets may be induced by the use of common data forcing or model algorithms,134

rather than the correct representation of ET, as several of the considered products are135

not independent (see next section).136

3.3. Cluster analysis

5ECMWF, Reading, UK.
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In order to study the inter-relationship between the individual datasets, a hierarchical137

cluster analysis of the multi-year mean ET values is performed (Figure 3). The cluster138

analysis sorts the datasets into groups in a way that the degree of association between two139

datasets belonging to the same group is maximal. The criterion used for our analysis is the140

Euclidean distance between datasets on each land grid cell. Datasets in the same branch of141

the cluster tree share similar global patterns. The strongest dataset cluster is built by the142

GSWP simulations (with GS-COLA being the only GSWP model outside the cluster).143

Most of the IPCC models also form a common branch in the cluster tree. However,144

the diagnostic datasets and reanalyses are separated into two different main branches145

of the cluster tree. This indicates that these datasets, although based on observations,146

exhibit distinct spatial patterns. All the reanalysis datasets are constrained by different147

exogenous data and some of them are on different main branches of the tree. Note also148

that simulations using the same model but a different forcing (Mosaic, driven with both149

GSWP and GLDAS forcing) are separated into two main branches. These findings suggest150

that forcing can be critical for the resulting ET patterns.151

4. Conclusions

This study provides an overview and evaluation of 41 global land ET datasets for the152

1989–1995 time period. Comparing IPCC AR4 GCM simulations with datasets which153

include some observational information (reference datasets), similarities can be found154

regarding their global patterns and level of uncertainty (interquartile ranges) in most155

6LSCE, UMR CEA-CNRS,
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regions. In their global average, the IPCC AR4 simulations show a smaller spread than156

the categories and groups that are partly based on observations, except for LSMs from the157

GSWP, which are driven with common forcing data. In addition, climate models display158

narrower inter-model range than the reference datasets in some regions, which may suggest159

shared biases. However the uncertainty of the observational datasets prevents evaluation160

of the magnitude of this bias.161

To reduce uncertainty in ET estimates, besides improving ET models, further collection162

of ’ground truth’ observations to validate and force the models continues to be essential,163

especially in data-poor regions. More refined analyses may allow a reduction of the un-164

certainty range in observations-based ET products, by identifying whether given outliers165

can be excluded based on physical considerations [e.g. McCabe et al., 2008]. Such anal-166

yses should nonetheless also consider the lack of independence among certain products,167

which may lead to an underestimation of ET uncertainty. This is well illustrated by the168

analysis of the GSWP simulations, which e.g. form a strong cluster in the cluster analysis169

performed for global ET values of all datasets. Further analyses of the datasets collected170

as part of the LandFlux-EVAL project will allow addressing some of these questions.171
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Table 1. Overview of employed ET datasets. Ct: Category.

Ct Group Dataset Reference Information

O
b
se
rv
at
io
n
s-
b
as
ed

d
at
as
et
s

D
ia
gn

os
ti
c
d
at
as
et
s

UCB Fisher et al. (2008) Priestley-Taylor, ISLSCP-II
(SRB, CRU, AVHRR)

MAUNI Wang and Liang (2008) Empirical, calibrated with Amer-
iflux, ISLSCP-II (SRB, CRU,
AVHRR)

PRUNI Sheffield et al. (2010) Penman-Monteith ET, ISCCP,
AVHRR

MPI Jung et al. (2010) Empirical upscaling of
FLUXNET, CRU, GPCC,
AVHRR

CSIRO Zhang et al. (2010) Penman-Monteith-Leuning ET
AWB Mueller et al. (2010) Atmospheric water balance

(GPCP, ERA-Interim)

L
S
M
s

GSWP GS-COLA, GS-
NOAH, GS-NSIPP,
GS-VISA, GS-ISBA,
GS-BUCK, GS-
CLMTOP, GS-
HYSSIB, GS-LAD,
GS-MOSAIC, GS-
MOSES2, GS-SIBUC,
GS-SWAP

Dirmeyer et al. (2006) 13 GSWP LSM simulations,
forced with ISLSCP-II and/or
reanalysis data

GLDAS GL-NOAH, GL-CLM,
GL-MOSAIC

Rodell et al. (2004)

ORCH
EI-ORCH Krinner et al. (2005) ORCHIDEE LSM with ERA-

Interim forcing
CRU-ORCH ORCHIDEE LSM with CRU-

NCEP forcing
VIC VIC Sheffield and Wood (2007) LSM

R
ea
n
al
y
se
s ERA-INT Dee and Uppala (2008) ERA-Interim Reanalysis

MERRA Bosilovich (2008) Reanalysis
M-LAND Reichle et al. (2010) MERRA-Land Reanalysis
NCEP Kalnay et al. (1996) Reanalysis
JRA25 Onogi et al. (2007) Reanalysis
Reference datasets Statistics (mean, IQR, standard

deviation) of ensemble of single
observations-based datasets (30
in total)

G
C
M
s

IP
C
C

A
R
4 ECHAM5, INMSM,

IPSL, HADGEM,
NCAR, HADCM,
MRI, GISS, MIROC-
MED, CCCMA,
GFDL

Meehl et al. (2007) AR4 simulations (20c3m) from 11
global climate models

D R A F T January 12, 2011, 12:21pm D R A F T



X - 18 MUELLER ET AL.: GLOBAL LAND EVAPOTRANSPIRATION DATASETS

Figure 1. Mean global land ET values for each dataset (a) with mean and standard deviation

for each category (numbers). Mean, relative interquartile range (IQR) and difference of mean to

mean of reference datasets (Ref.) of the diagnostic datasets (b-d), LSMs (e-g), reanalyses (h-j),

and IPCC AR4 simulations (k-m). Mean (n) and relative IQR (o) of the reference datasets and

difference of relative IQRs IPCC AR4 to reference datasets (p). Hatched areas in d,g,j,m show

a nominal 5%-significance level as heuristic descriptive indicator (Wilcoxon Rank-Sum test).
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Figure 2. Deviations of each dataset from the reference datasets’ mean (displayed on the

bottom as ’ref’) over 1989–1995 (multi-year means) for the selected river basins (1) Amazon,

(2) Mississippi, (3) Central European basins, (4) Volga, (5) Changjiang, (6) Nile, (7) Murray-

Darling. The datasets are grouped into diagnostic datasets (Diagn), LSMs (LSMs), reanalyses

(Rean) and IPCC AR4 simulations (IPCC). P-R values are marked with red stars and dashed

lines. Location of river basins (right bottom).
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Figure 3. Hierarchical cluster analysis of global ET values, averaged over 1989–1995, using

Euclidean distance matrix. Diagnostic datasets (red), LSMs (green), reanalyses (yellow) and

IPCC AR4 simulations (grey).
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