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ABSTRACT32

This study assesses the impact of satellite-rainfall error structure on soil moisture 33

simulations with the NASA Catchment land surface model. Specifically, the study 34

contrasts a complex satellite rainfall error model (SREM2D) to the standard rainfall error 35

model used to generate ensembles of rainfall fields as part of the Land Data Assimilation 36

System developed at the NASA Global Modeling and Assimilation Office (LDAS). The 37

study is conducted in the Oklahoma region, which offers a good coverage by weather 38

radars and in-situ meteorological and soil moisture measurement stations. We used high-39

resolution (25-km, 3-hourly) satellite rainfall fields derived from the NOAA CMORPH 40

global satellite product and rain gauge-calibrated radar rainfall fields (considered as the 41

reference rainfall). The LDAS simulations are evaluated in terms of rainfall and soil 42

moisture error. Comparisons of rainfall ensembles generated by SREM2D and LDAS43

against reference rainfall show that both rainfall error models preserve the satellite 44

rainfall error characteristics across a range of spatial scales. The error-structure in 45

SREM2D is shown to generate rainfall replicates with higher variability that better 46

envelope the reference rainfall than those generated by the LDAS error model. Likewise, 47

the SREM2D-generated soil moisture ensemble shows slightly higher spread than the 48

LDAS-generated ensemble and thus better encapsulates the reference soil moisture. Soil 49

moisture errors, however, are less sensitive than precipitation errors to the complexity of 50

the precipitation error modeling approach because soil moisture dynamics are dissipative 51

and non-linear.52

Keywords: Satellite Rainfall, Soil Moisture, Uncertainty.53
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1. Introduction54

Surface and root zone soil moisture control the partitioning of available energy 55

incident on the land surface. For this reason, soil moisture is a key variable in the water 56

cycle that impacts local weather - such as cloud coverage and precipitation - and 57

hydrological parameters - such as runoff and evapotranspiration (Betts and Ball 1998). 58

Therefore an accurate characterization of soil water content can lead to improvements not 59

only in weather and climate prediction, but also in hazard mitigation (floods and 60

droughts), agricultural planning and water resources management. Arguably, soil 61

moisture is an important parameter for the derivation of flood warning schemes based on62

rainfall thresholds (Martina et al. 2006; Carpenter et al. 1999). In such systems, 63

quantitative soil moisture information is needed for the selection of the proper rainfall-64

runoff threshold curve to use with the estimated rainfall volume data for issuing flood 65

warnings.66

Information on soil moisture may be obtained from three main sources: ground 67

measurements, remote sensing and land surface models. A common approach to estimate 68

soil moisture at regional to global scales is to run a land surface model forced with 69

meteorological observations. The physical formulation of a land surface model integrates 70

the atmospheric forcing and produces estimates of soil moisture. Different sources of 71

error affect land surface model predictions: errors in the atmospheric forcing, faulty 72

estimates of the model parameters and deficient model formulations (Reichle et al. 2004).73

Indirect measurements of surface soil moisture can be obtained from satellite sensors 74

that measure the microwave emission by the land surface (e.g., Jackson 1993; Njoku et 75

al. 2003). However, satellite data coverage is spatially and temporally incomplete and 76
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retrievals are prone to errors because of limitations in the instrument sampling, 77

difficulties in the parameterization of the physical processes that relate brightness 78

temperature with the near-surface soil moisture, and difficulties in obtaining a global 79

distribution of the parameters of the retrieval algorithm. Moreover, it is difficult to 80

retrieve soil moisture in areas where the fraction of water is significant (i.e. coastal areas) 81

and/or when the soil is frozen or densely vegetated.82

Data assimilation systems merge satellite retrieval information with the spatially and 83

temporally complete information predicted by the land surface models to provide a 84

superior product. This is achieved by correcting the model predictions (of soil moisture, 85

for example) with a stochastic filtering technique that uses differences between the model 86

predictions and satellite estimates along with the associated uncertainty of each data 87

source. Constraining the model with observations using data assimilation methods has 88

been demonstrated as an effective way to integrate data with models. Studies have 89

confirmed that assimilating satellite-retrieved soil moisture improves the dynamic 90

representation of soil moisture (Reichle et al. 2007).91

The quality of the assimilation estimates depends critically on the realism of the error 92

estimates for the model and the observations (Reichle et al. 2008). Arguably, the way 93

model errors are handled in standard land data assimilation systems can use 94

improvement, which should lead to better estimates. One such system is the Land Data 95

Assimilation System developed at the NASA Global Modeling and Assimilation Office 96

(hereinafter LDAS). Specifically, LDAS applies perturbations to the model forcing and 97

state variables to obtain an ensemble of land surface fields that reflects modeling 98

uncertainty. Perturbations to the precipitation forcing are of particular importance to the 99
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modeling of soil moisture uncertainty, which motivates our investigation of the impact of 100

the rainfall error model on the simulation of the soil moisture error characteristics.101

Specifically, the precipitation perturbations generated by the LDAS error model are 102

spatially and temporally correlated and log-normally distributed multiplication factors. 103

Recent studies have proposed more complex satellite rainfall error models for generating 104

error ensembles of satellite rainfall fields (Bellerby and Sun 2005, Hossain and 105

Anagnostou 2006a). Hossain and Anagnostou (2006b) investigated one of those rainfall 106

error models, the multi-dimensional Satellite Rainfall Error Model (hereinafter 107

SREM2D), to describe the uncertainty in soil moisture predictions from a land surface 108

model forced with satellite rainfall fields.109

In this paper we seek to expand the Hossain and Anagnostou (2006b) study by 110

conducting numerical investigations to: (i) assess the impact of satellite-rainfall error 111

structure on soil moisture uncertainty simulated by the NASA Catchment land surface 112

model; (ii) contrast the more complex SREM2D rainfall error model to the standard 113

rainfall error model used in LDAS to generate rainfall ensembles; and (iii) further 114

investigate the propagation of precipitation errors into soil moisture errors.115

We begin with a description of the experiment domain, period and data employed in 116

the study (Section 2), followed by a brief overview of LDAS (Section 3) and a 117

description of the rainfall error schemes (Section 4). In Section 5, we describe the 118

experiments and in Section 6 we present and discuss our results. We conclude with the 119

major findings in Section 7.120



6

2. Study region and data121

a. Study area and period122

The region of Oklahoma in the Midwestern United States was chosen as study area 123

due to its smooth terrain, good coverage by weather radars and dense network of hydro-124

meteorological stations from the Oklahoma (OK) Mesonet (Brock et al. 1995; Figure 1). 125

The region is characterized by a continental climate associated with cold winters and hot 126

summers. Its topography rises gently from an altitude of 88 m.a.s.l. (meters above sea 127

level) in the southeastern corner to a height of 1,515 m.a.s.l. at the tip of the “panhandle”128

in the northwestern corner. The study region is discretized into a 25-km x 25-km 129

Cartesian modeling grid (100°W-95°W Longitude and 34°N–37°N Latitude), 130

representing a total area of about 137,500 km2, over which radar and satellite rainfall data131

were interpolated (see discussion below). The western half of the domain is characterized 132

by drier conditions, compared to the wetter eastern half, as shown by the cumulative rain 133

map. The study period includes three continuous years from 1 January 2004 to 31 134

December 2006.135

b. Data description136

Data from various sources were used for this study. We focus on two high-resolution 137

rainfall products: the WSR-88D radar rainfall and the CMORPH satellite rainfall. Along 138

with supplemental surface meteorological forcing data from the Global Land Data 139

Assimilation Systems (GLDAS) project, the radar and satellite precipitation products are 140

used to force the land surface model and generate soil moisture fields. The coarser (and 141

global) GLDAS forcing data was chosen over the finer-scale NLDAS forcing data, as the142

target of this study is to include better precipitation error characterization in global land 143
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data assimilation. Finally, we also employ ground observations of soil moisture from in-144

situ stations for a comparison with the land surface model integrations.145

The radar dataset is extracted from the Stage IV NWS Weather Surveillance Radar-146

1988 Doppler (WSR-88D) precipitation estimates with real-time adjustments based on 147

mean-field radar-rain gauge hourly accumulation comparisons (Fulton et al. 1998). The 148

Stage IV is a national mosaic of precipitation estimates based on the Stage II products 149

from all WSR-88D radars across the continental US. WSR-88D Stage IV data are 150

available at 4-km resolution and hourly time steps. There are many sources of uncertainty 151

in the WSR-88D rain rate estimates, including the drop size distribution, the vertical 152

structure of raindrops between the sampling volume and the ground, geometric effects of 153

the spreading radar beam, small-scale variability of precipitation within a sampling 154

volume, and erroneous radar echoes - such as anomalous propagation of the radar beam155

(Krajewski et al. 2006). The above-mentioned mean-field bias adjustment of radar 156

rainfall towards rain gauge measurements is designed to reduce the uncertainty in radar 157

rainfall estimates.158

The satellite product used here is the NOAA-Climate Prediction Center morphing 159

(CMORPH) product (Joyce et al. 2004). The product interpolates successive passive 160

microwave (MW) rainfall estimates based on high-frequency infrared (IR) images. 161

Specifically, the algorithm uses motion vectors derived from half-hourly geostationary162

satellite IR imagery to interpolate the less frequent but relatively high quality rainfall 163

estimates obtained from low earth orbit MW sensors. The dynamic morphological 164

characteristics (such as shape and intensity) of precipitation features are interpolated 165

between consecutive microwave sensor samples through time-weighted linear 166
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interpolation. This process yields spatially and temporally continuous MW rainfall fields 167

that have been guided by IR imagery and yet are independent of IR rain retrievals. The 168

CMORPH product is available half-hourly at 8km resolution. It has been shown to have a 169

high probability of rain detection as well as high temporal and spatial correlation when 170

compared to ground observed rainfall data across the Oklahoma region (Anagnostou et al. 171

2010). For this study, we re-gridded and aggregated the satellite and radar precipitation 172

datasets to the 25 km modeling grid and a 3–hourly time step for analysis and input to the 173

land surface modeling system.174

The remainder of the surface meteorological forcing data (including air temperature 175

and humidity, radiation, and wind speed) are from the GLDAS project (Rodell et al. 176

2003; http://ldas.gsfc.nasa.gov) based on output from the global atmospheric data177

assimilation system at the NASA Global Modeling and Assimilation Office (GMAO; 178

Bloom et al. 2005). The GLDAS data used here are identical to those customized for the 179

GMAO seasonal forecasting system (3-hourly time steps and 2°-by-2.5° resolution in 180

latitude and longitude).181

Besides the above-mentioned surface meteorological observations, the OK Mesonet182

also provides soil moisture observations that we use in our study to demonstrate the 183

viability of the land surface modeling system. Measurements are taken at 4 depths (5, 25, 184

60 and 75cm) and 30-min resolution at 106 automated observing stations located 185

throughout the state (Figure 1). The soil moisture dataset is quality controlled and 186

includes quality flags in the dataset. For our study period, soil moisture observations of 187

sufficient quantity and quality at all four measurement depths were available at 21 of the 188



9

106 OK Mesonet stations (Figure 1) and were used to evaluate the Catchment model 189

(section 3.b).190

3. LDAS191

a. Overview192

The land surface model used in LDAS and in this study is the Catchment land surface 193

model (hereinafter Catchment model or CLSM; Koster et al. 2000). The Catchment 194

model is a nontraditional modeling framework that includes an explicit treatment of 195

subgrid soil moisture variability and its effect on runoff and evaporation. The basic 196

computational unit of the model is the watershed, whose boundaries are defined by 197

topography. Within each element, the vertical profile of soil moisture is given by the 198

equilibrium soil moisture profile and the deviations from the equilibrium profile in a 1m 199

root zone layer and in a 2cm surface layer. Moreover, the model describes the horizontal 200

redistribution of soil moisture (based on the statistics of the catchment topography) in201

each watershed. The soil and vegetation parameters used in the Catchment model are 202

from the NASA GEOS-5 global modeling system (Rienecker et al. 2008).203

In a data assimilation system, the model-generated soil moisture is corrected toward 204

the observational estimate. The LDAS data assimilation system is based on the ensemble 205

Kalman filter (EnKF) and dynamically updates model error covariance information by 206

producing an ensemble of model predictions, which are individual model realizations 207

perturbed by the assumed model error (Reichle et al. 2007). The ensemble approach is 208

widely used in hydrologic data assimilation because of its flexibility with respect to the 209

type of model error (Crow and Wood 2003) and well suited to the nonlinear character of 210



10

land surface processes (Reichle et al. 2002a, 2002b). As already mentioned, the accurate 211

specification of model and observation errors is the key to successful data assimilation212

(Reichle et al. 2008). Here, we focus on the ability of the modeling system to characterize 213

precipitation and soil moisture errors without actually assimilating soil moisture 214

observations into the land surface model.215

b. Evaluation of model soil moisture216

Our study of the rainfall error models depends in part on the ability of the Catchment 217

model to describe soil moisture dynamics in a realistic manner. Numerous studies have 218

demonstrated the Catchment model's viability for large-scale soil moisture modeling 219

(Reichle et al. 2009, Bowling et al. 2003, Nijssen et al. 2003, Boone et al. 2004). For 220

further demonstration, this section compares soil moisture time series from OK Mesonet 221

station observations and corresponding Catchment model simulations, generated by 222

forcing the model with WSR-88D rainfall and GLDAS meteorological forcing fields. The 223

model was spun up by looping three times over the three years of forcing data.224

In situ soil moisture measurements and output from land surface models designed for 225

global simulations (such as the Catchment model) typically exhibit systematic differences 226

in their estimates of soil moisture (Reichle et al. 2004). These systematic differences are, 227

among other reasons, related to (i) the point-scale character of the in situ observations 228

versus the distributed nature of the model estimates and (ii) a mismatch in the available 229

measurement depths and the vertical resolution of the land surface model. Regarding the 230

latter point, "surface" soil moisture hereinafter refers to the OK Mesonet soil moisture 231

measured at 5cm depth and the (0-2) cm surface soil moisture output from the Catchment 232

model. "Root zone" soil moisture is defined here as the (0-100) cm output from the 233
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Catchment model and the corresponding depth-weighted average over the 5cm, 25cm, 234

60cm and 75cm OK Mesonet observations (with weights of 0.15, 0.27, 0.25, 0.33, 235

respectively).236

In global soil moisture modeling and data assimilation the systematic differences can 237

be addressed through rescaling or bias estimation (Reichle et al. 2007, De Lannoy et al. 238

2007). Here, we focus on anomaly time series, specifically standard normal deviates that 239

capture the correspondence in phase between model estimates and in situ measurements,240

regardless of potential mean biases or differences in dynamic range (Entekhabi et al. 241

2010b). Figure 2 shows standard-normal deviate daily time series of (1) model-predicted 242

surface and root zone soil moisture, and (2) corresponding Mesonet observations during 243

the three summer seasons (months of June, July, August and September, or JJAS) of 244

2004, 2005 and 2006. The standard-normal deviates shown in Figure 2 are computed by 245

subtracting the 2004-2006 JJAS mean and dividing by the corresponding standard 246

deviation. Two representative Mesonet stations (one in the wetter eastern half and one in 247

the drier western half of the region) and the corresponding 25 km grid cell model 248

simulations were selected to show standard-normal deviate time series. A station-average 249

standard-normal deviate time series is also computed across the 21 good quality Mesonet 250

stations and the corresponding 25 km grid cells where sufficient OK Mesonet 251

observations were available for all four measurement depths.252

Figure 2 demonstrates that the standard-normal deviate time series are consistent253

between surface and root zone soil moisture, and that the variations of the Catchment 254

model soil moisture are consistent with the OK Mesonet measurements. The correlation 255

coefficients between Mesonet and Catchment model soil moisture across the 21 stations 256
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is 0.56 for surface soil moisture and 0.63 for root zone soil moisture. For the individual 257

stations shown in the middle and bottom panels of Figure 2, the correlation coefficients 258

are 0.82 (0.86) for the surface soil moisture (root zone soil moisture) at the eastern station 259

and 0.70 (0.70) for the western location. The root zone soil moisture variations are260

smoother than those of surface soil moisture because the upper few centimeters of the soil 261

are more exposed to the atmosphere and vary more rapidly in moisture content in 262

response to rainfall forcing and evaporation. Based on this analysis, we are confident of 263

the viability of the soil moisture modeling system for use in this study.264

4. The rainfall error models265

a. Overview266

The objective of the study is to contrast the LDAS rainfall error model to the more 267

complex SREM2D rainfall error model for characterizing rainfall and soil moisture 268

uncertainty. The LDAS model describes rainfall error by scaling the precipitation forcing 269

based on an ensemble of multiplicative perturbation fields that are correlated in space and 270

in time (Reichle et al. 2007). This implies that in LDAS all ensemble members agree in 271

terms of rain occurrence and differ only in terms of rainfall rate magnitude. A spatial 272

correlation structure is imposed based on a two-dimensional Gaussian correlation 273

function. Temporal error correlation is modeled with a first-order auto-regressive process 274

in the LDAS error model, but was set to zero in this work for compatibility with the 275

SREM2D implementation. This error structure is parsimonious in its input parameter 276

requirements and is numerically convenient, but it can only approximate the rain rate 277

error variability, which is not a holistic representation of satellite retrievals that are 278
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susceptible to significant rain detection and false detection uncertainties (Hossain and 279

Anagnostou 2006b).280

A more inclusive characterization of precipitation uncertainty is based on the Hossain 281

and Anagnostou (2006a) SREM2D rainfall error model. The model was originally 282

developed to use “reference” rainfall fields as input that represent the “true” surface 283

rainfall, and it employs stochastic space-time formulations to characterize the multi-284

dimensional error structure of corresponding satellite retrievals. Reversing in this study 285

the definition of input in SREM2D, the multi-dimensional structure of deviations from 286

the reference (i.e. radar) rainfall was derived with respect to the satellite rainfall estimates 287

(input field). This process generates ensembles of radar-like rainfall fields from satellite 288

rainfall retrievals that can be used to force the land surface model, thus generating 289

ensembles of model-predicted soil moisture fields. This approach is similar to the LDAS290

scheme; however it allows more complexity in the error modeling structure of rainfall.291

Again, the precipitation error in the LDAS model assumes a perfect delineation of 292

rainy and non-rainy areas and simply scales the input precipitation forcing with a 293

multiplicative perturbation (different scaling factor for each time, location, and ensemble 294

member). This implies, for example, that all LDAS ensemble members have zero 295

precipitation whenever the input precipitation is zero. In SREM2D ensemble members, 296

by contrast, rain can occur in areas where the input precipitation is zero. Specifically, the 297

joint spatial probability of successful delineation of rainy and non-rainy areas is 298

characterized in SREM2D using Bernoulli trials of a uniform distribution with a 299

correlated structure generated based on Gaussian random fields. These Gaussian random 300

fields are transformed into uniform distribution random fields via an error function 301
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transformation. For additional details on SREM2D we refer the reader to (Hossain and 302

Anagnostou 2006a).303

Modeling the spatial structures for detection is an important element of SREM2D as 304

real sensor data are known to exhibit spatial clusters for false rain and false no-rain 305

detection. In summary, the key difference between the two error models is that SREM2D 306

characterizes the spatial structure of the successful delineation of rainy and non-rainy 307

areas, while both models describe the spatial variability of rain rate estimation error.308

The reference rainfall is defined here as the Stage IV WSR-88D product while the 309

satellite rainfall is the CMORPH global product. For this study, CMORPH rainfall 310

estimates were adjusted to the mean climatology of the radar rainfall to be consistent with 311

the LDAS assumption of unbiased rainfall forcing fields. The bias adjustment factor was 312

determined based on the three year time series of WSR-88D and CMORPH rainfall 313

estimates over Oklahoma. Figure 3 illustrates the consistency in the cumulative area-314

average precipitation during the study period between the radar precipitation and the 315

adjusted CMORPH precipitation.316

The input parameters for the SREM2D and LDAS precipitation error models are 317

summarized in Table 1. In both error models, we set the mean value for the log-normal 318

multiplicative perturbations to unity in order to obtain (nearly) unbiased replicates. The 319

remaining parameters were calibrated to obtain replicates of the CMORPH precipitation 320

that reproduce the overall standard deviation of the CMORPH vs. radar rainfall errors (as 321

will be demonstrated below in Table 2). From Table 1 we note that the standard deviation 322

parameter value for multiplicative perturbations is 0.2 for SREM2D and 0.4 for LDAS. 323

The SREM2D parameter is smaller because in the more complex SREM2D error model, 324
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variability is added from additional sources (e.g. rain detection and false detection 325

uncertainties), whereas in LDAS the uncertainty is entirely determined by the 326

multiplicative perturbations. As stated above, time correlation was not applied in this 327

study. Error correlation lengths for the multiplicative error (SREM2D and LDAS) and for 328

the delineation of rainy and non-rainy areas (SREM2D only) range from 70 to 190 km 329

(Table 1). Additional SREM2D parameters include a look-up table for the probability of 330

successful rain detection (not shown in Table 1).331

b. Performance of the rainfall error models332

Before we analyze the performance of the SREM2D and LDAS error models in terms 333

of the error statistics of the generated ensemble rainfall fields, it is instructive to discuss 334

sample realizations of the precipitation replicates. Figure 4 shows snapshots (for three335

consecutive time steps) of a precipitation event from radar and satellite, along with one 336

representative member each from LDAS and SREM2D ensembles. Generally, the 337

structure of the radar (reference) rainfall is well captured by the satellite as well as by the 338

perturbed fields. By design, each LDAS ensemble member is only a rescaled version of 339

the satellite rain field (with spatially distributed scaling factors). In contrast, SREM2D 340

may introduce rain in pixels where the satellite does not measure rain (to statistically 341

represent the rain detection error) while it may assign zero to pixels where satellite 342

detects rain (to statistically represent the false detection error). This is due to 343

parameterizations in SREM2D that describe the probability of detection and false alarms 344

as a function of satellite rainfall. This is apparent in the upper panels of Figure 4, where 345

the SREM2D replicate introduces precipitation in the southwestern quadrant of the 346

domain, where no rain was estimated by CMORPH. During the second 3hr-time step347
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(middle row of Figure 4) the SREM2D ensemble member shows a dry area in the 348

southeastern corner of the domain (which corresponds to a dry region in the radar 349

measurement), while the satellite detects rain in those pixels (false alarm case). The same 350

effect can be observed in the last snapshot (bottom row of Figure 4), where a dry area 351

along the western border of the domain is well captured by the SREM2D perturbed field, 352

even though CMORPH erroneously detected rain. Note that the perturbed LDAS and 353

SREM2D fields in Figure 4 are just one ensemble member: they are not meant to 354

replicate the true field, rather illustrate the statistical properties of the ensemble.355

The generated ensemble fields are also assessed in terms of the first order (mean) and 356

second order (variance) error statistics against the reference (radar) and contrasted to the 357

same statistics determined for the adjusted CMORPH satellite dataset. Three spatial 358

scales are considered: 100 km (eight grid cells), 50km (55 grid cells) and 25km (220 grid 359

cells) to assess how the error modeling techniques can represent the mean and variance of 360

satellite error across scales. Results are presented in Table 2. The error is here defined as 361

the difference at three-hour time steps between the adjusted CMORPH satellite rainfall 362

(or LDAS ensemble member; or SREM2D ensemble member) and the reference radar 363

rainfall. In the case of perturbed rainfall fields, the values reported in the table are the 364

average of the error statistics (mean and standard deviation) across the individual 365

ensemble members.366

The bias values shown in Table 2 are negligible across all scales because we adjusted 367

the CMORPH precipitation to match the three-year total radar precipitation (see Figure 3 368

and discussion above), and because the perturbations generated by both precipitation 369

error models are designed to be unbiased, which is also illustrated in Figure 3. Moreover, 370
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the error standard deviation decreases with increasing scale and is well represented by 371

both error models. This suggests that after calibration the two error schemes can 372

adequately capture the magnitude of the rainfall error, which is consistent with the results 373

of Hossain and Anagnostou (2006b).374

5. The soil moisture simulation experiments375

The Catchment model was forced with perturbed and unperturbed precipitation fields 376

to generate soil moisture fields in two different modes: simulation and open loop runs, 377

which are described next and schematized in Figure 5. All Catchment model integrations 378

were initialized from a spin-up simulation conducted with the WSR-88D radar 379

precipitation (section 2a).380

Simulation mode – no precipitation perturbations: As shown in the center and left 381

portions of Figure 5, the WSR-88D (radar) and unperturbed, adjusted CMORPH 382

(satellite) rainfall fields force the Catchment model to generate surface and root zone soil 383

moisture fields. The soil moisture output from the model integration forced with the radar 384

rainfall represents the reference for soil moisture. Soil moisture modeling errors are then 385

computed by differencing the soil moisture estimates derived from CMORPH and the 386

reference soil moisture. Alternatively, in situ soil moisture observations from the OK 387

Mesonet could be considered as the reference. However, the problem with using the in-388

situ data in the subsequent soil moisture error investigation is that the effect of rainfall 389

error could not be isolated from other error sources. This would make it difficult to study 390

the significance of precipitation error model complexity in characterizing the predictive 391

uncertainty of soil moisture.392
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Ensemble mode – with precipitation perturbations: Ensemble Runs are Montecarlo 393

simulations as shown in the right-most box in Figure 5. The adjusted CMORPH satellite 394

precipitation fields were perturbed using the SREM2D and, separately, the LDAS rainfall 395

error model, to force the Catchment model. Each ensemble integration consists of 24 396

members and generates an ensemble of soil moisture fields. Each ensemble integration is 397

then evaluated against the reference soil moisture fields obtained from the simulation 398

experiments (without precipitation perturbations) in terms of error statistics. Put 399

differently, we analyze the skill of the LDAS and SREM2D ensemble integrations to 400

represent the soil moisture modeling error with respect to the reference fields.401

6. Results and discussion402

a. Rainfall-to-soil moisture error propagation403

Figure 6, 7 and 8 illustrate time series of 0-2 cm surface soil moisture and 0-100 cm 404

root zone soil moisture from the Catchment model forced with the unperturbed 405

(reference) radar rainfall (thick lines), the unperturbed satellite precipitation (thin lines), 406

and the LDAS and SREM2D perturbed rainfall (ensemble envelopes shown in gray 407

shading). Time series are shown for a representative interval of four warm season months408

(June to September 2005). Two different spatial scales are considered: the average over 409

the whole domain (Figure 6) and the 25 km grid cell resolution (Figure 7 and 8). For the 410

latter, two representative grid cells have been selected – one in the eastern half 411

(representing wetter conditions) and the other in the western half of the region 412

(representing drier conditions).413
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As expected, the domain-average soil moisture time series (Figure 6) show less 414

variability than the corresponding time series at the 25 km scale (Figures 7 and 8), with a 415

commensurately smaller ensemble spread. Figure 6 indicates little difference between the 416

SREM2D and LDAS ensemble integrations at the domain-average scale, both in terms of 417

the rainfall and the soil moisture time series. At the 25 km scale (Figure 7 and 8),418

however, the ensemble envelope of SREM2D is wider than that of LDAS and better 419

encapsulates the radar measured rainfall because the SREM2D rainfall error model420

generates more variability. This behavior is evident in both surface and root zone soil 421

moisture time series, which show similar ensemble envelopes for both depths.422

b. Exceedance and uncertainty ratios423

The wider ensemble envelopes of the SREM2D ensemble increase the probability of 424

encapsulating the reference simulations between the lower and upper ensemble bounds of 425

the ensemble. In this section we present two metrics, the exceedance ratio (ER) and the 426

uncertainty ratio (UR), that further quantify the ability of the ensemble integrations to 427

capture precipitation and soil moisture errors. The exceedance ratio measures the 428

potential of the error model to capture the observed fields, while the UR provides 429

information about the relative predictive capability, specifically, the ratio of the ensemble 430

spread relative to a reference value. Each metric is computed for the perturbed rainfall (or 431

soil moisture) with respect to the radar rainfall (or radar rainfall-forced soil moisture).432

Two contrasting issues are considered in using these statistics: if the uncertainty limits are 433

too narrow (that is, ER is high), then the comparison with the reference fields suggests434

that the model errors are underestimated; on the other hand, if the limits are too wide (that 435
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is, UR is high), the model may not have an adequate predictive capability (Hossain et al. 436

2004).437

Specifically, the exceedance ratio (ER) is defined as:438

t

exceedance

N
N

ER =
(1)439

where Nexceedance is the number of times the reference rainfall (or reference-derived soil 440

moisture) falls outside the ensemble envelope and Nt is the total number of times and 441

locations. The uncertainty ratio (UR) is defined as the ratio of the simulated uncertainty 442

(defined as the average difference between upper and lower limits of the ensemble 443

envelope) normalized by the corresponding reference variable (defined as the average 444

precipitation or soil moisture):445
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In other words, UR represents the bulk variability in the perturbed variable relative to the447

typical value of that variable (Hossain and Anagnostou 2005).448

The statistics presented above were calculated for different spatial scales (25km, 449

50km, and 100km). The left-most panels of Figure 9 show that, for precipitation, ER450

assumes considerably higher values in the LDAS error model compared to SREM2D. 451

Specifically, in the best case - at the 25km scale - the radar rainfall measurement is 452

included in the envelope of the LDAS realizations only 80% of the times on average. 453

This percentage reduces to a value lower than 70% at coarser resolutions. On the other 454

hand, in the case of SREM2D, about 95% of the times the reference precipitation is 455

between the minimum and the maximum value of the ensemble at all spatial scales. The 456
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difference between the two error models is due to the SREM2D potential of producing 457

rain even where the input precipitation is zero, and of assigning no rain to areas where the 458

reference measures precipitation. The scale dependence in the ER values of LDAS is 459

attributed to the fact that this error model does not account for rain detection uncertainties 460

that may introduce biases at coarser scales. As expected, the UR exhibits lower values in 461

the case of LDAS error model relative to SREM2D, confirming that the more complex 462

SREM2D error model generates higher variability than the LDAS approach.463

The center and right-most panels of Figure 9 show the ER and UR metrics for soil 464

moisture estimates from the Catchment model. Values of ER are considerably higher in 465

soil moisture compared to precipitation, indicating that the output from both ensemble 466

integrations generally captures soil moisture error variability less definitively than rainfall 467

error. Again, the uncertainty structure is similar for surface and root zone soil moisture, 468

with comparable ER values. UR is slightly lower for root zone than for surface soil 469

moisture because deeper soil moisture carries less variability, as already discussed. 470

Similarly to what was shown for precipitation, SREM2D derived soil moisture fields 471

have higher potential (40% at the 25km scale) of enveloping reference fields than those 472

derived by the LDAS error propagation scheme (30% at the 25km scale). The downside 473

of producing more variability is that the ensemble spread could be overestimated, which 474

could result in excessive weight given to the observations in ensemble-based data 475

assimilation.476

In the propagation from rainfall to soil moisture, the exceedance ratio is amplified: 477

while ER is close to 0.05 for precipitation fields, ER reaches values of 0.65 on average 478

for soil moisture (Figure 9). In contrast, the uncertainty ratio drops considerably in the 479
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propagation from precipitation to soil moisture: UR values for precipitation replicates 480

range from 1 to 4, while UR values for soil moisture replicates are only 0.05 to 0.15. This 481

dampening of the variability of the error is due to two effects: the integration of highly 482

intermittent precipitation into more smoothly varying soil moisture, and the natural lower 483

and upper bounds of soil moisture relative to rainfall. Figure 9 thus clearly demonstrates 484

that soil moisture error variability is attenuated in the rainfall–to-soil moisture 485

transformation process in a non-linear fashion.486

In summary, the difference between the SREM2D and LDAS error models that was 487

evident in terms of rainfall reduces considerably when the simulated soil moisture fields 488

are considered (Figure 9). Perturbing precipitation with a more complex precipitation 489

error approach leads to only slightly higher variability in the simulated soil moisture 490

fields and only a moderate increase of the potential of enveloping the reference. This 491

suggests that the sensitivity of soil moisture data assimilation to the choice of 492

precipitation error model may be limited.493

c. Relative bias and relative root mean square error494

To further highlight the features of the rain error models and the propagation of error 495

statistics from precipitation to soil moisture we now present two additional error metrics: 496

the relative bias (rBIAS) and relative Root-Mean-Square-Error (rRMSE). Specifically, 497

we first compute reference values for these two statistics that measure the errors between 498

the unperturbed (adjusted) CMORPH precipitation (or corresponding soil moisture fields) 499

and the reference WSR-88D radar precipitation (or corresponding soil moisture fields). 500

These reference statistics, shown with dots in Figure 10, are defined as follows:501
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where N=total number of time steps × total number of grid cells; ˆ ϑ represents CMORPH 504

precipitation (or corresponding soil moisture fields) and ϑ is the reference WSR-88D 505

radar precipitation (or corresponding soil moisture fields).506

Next, we compute the same statistics for each individual member of the LDAS (or 507

SREM2D) ensemble for precipitation and soil moisture (again versus the reference radar 508

precipitation or corresponding reference soil moisture). In equations (3) and (4) ˆ ϑ can 509

then be read as precipitation (or soil moisture) from a single member of the LDAS (or 510

SREM2D) ensemble. The rBIAS and rRMSE metrics for the individual ensemble 511

members are then averaged across the ensemble, separately for SREM2D and LDAS 512

(shown in Figure 10 as square symbols) and can be compared to the reference statistics. 513

Ideally, the statistics calculated for the ensemble members should replicate, at least on 514

average, the reference error statistics. The metrics described in this section differ from the 515

ones shown in Table 2; here we are computing relative (unitless) statistics, while Table 2 516

presents the mean and the standard deviation of the errors.517

Figure 10 shows that, broadly speaking, both rainfall error models yield similar rBIAS 518

and rRMSE values, and that both error models adequately reproduce the reference 519

statistics. A closer inspection of the rBIAS values for precipitation reveals a small 520

residual bias in LDAS perturbed precipitation. Furthermore, the absolute value of rBIAS 521
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for soil moisture is slightly larger than that for rainfall, which again suggests that the 522

precipitation-to-soil moisture error transformation is non-linear. On the other hand, the 523

relative RMSE is appreciably smaller for soil moisture than for precipitation, which 524

confirms what was shown in the uncertainty ratios and again reflects the integrating 525

nature of the soil moisture. Together, these statistics illustrate the non-linear 526

transformation of precipitation error that introduces biases in soil moisture simulations, 527

while dampening error variability. This corroborates our observation in the previous 528

section that simulated soil moisture ensembles are less sensitive to the complexity of the 529

precipitation error structure than precipitation ensembles themselves.530

7. Conclusions531

This study focused on the sensitivity of soil moisture errors to rainfall error modeling532

of different complexity within the LDAS developed at the NASA GMAO. The simpler 533

LDAS rainfall error model was contrasted to the more complex SREM2D rainfall error 534

scheme, which accounts for actual satellite rainfall error characteristics, such as 535

probability of detection and probability of false alarm. We find that SREM2D provides 536

more uncertainty in the precipitation ensemble and better encapsulates the reference 537

precipitation (WSR-88D dataset). Generally, the SREM2D ensemble reproduces the 538

reference error statistics (relative bias and relative RMSE) better than the LDAS error 539

ensemble (Figure 10).540

Soil moisture simulations are shown to be less sensitive to the complexity of the 541

precipitation error modeling approach than the precipitation fields themselves, due to the 542

dampening of the error variability along with a non-linear increase of the mean error. 543

This can be attributed to different factors: (1) the rain-to-soil moisture error propagation 544
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is a non-linear and integrating process; and (2) soil moisture dynamics are inherently 545

dissipative (i.e. perturbations are damped in time), reducing the apparent sensitivity of 546

soil moisture relative to precipitation.547

The higher variability added by SREM2D to the precipitation ensemble has little effect 548

on soil moisture simulations. The ensemble produced by perturbing the forcing 549

precipitation with a more complex precipitation error approach leads to only slightly550

higher potential of enveloping the reference modeled soil moisture.551

One caveat to our results is that we tested the precipitation-to-soil moisture 552

propagation of errors only with the Catchment land surface model. Future studies should 553

investigate the sensitivity to different approaches for land surface modeling.  554

Nevertheless, we are confident that our general conclusions remain valid if other land 555

surface models were substituted for the Catchment model, even if some details of the 556

error statistics are likely to change. Note also that this work was done with a view toward 557

land data assimilation at the global scale, for which the Catchment model has been used 558

successfully (Reichle et al. 2007).559

When used in stand-alone mode, both precipitation error models investigated here 560

include the option of generating precipitation replicates that are subject to temporally 561

correlated errors. Such temporal error correlations were not used here because their use 562

would have made the integration of SREM2D into the LDAS far more difficult and was 563

left for future work. It is possible that the addition of temporal error correlations increases 564

the ability of the LDAS error model to generate precipitation replicates with enhanced 565

variability and thus reduces its exceedance ratio, bringing it more in line with that of 566

SREM2D-generated replicates.567
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Our results suggest future studies on how SREM2D can be employed to improve the 568

use of remotely sensed data in a land data assimilation system. Such studies should focus 569

on understanding and quantifying the impact of precipitation error modeling on the 570

efficiency of assimilating soil moisture fields in a land data assimilation system.571

Finally, the results obtained from this study provide useful information about the use 572

of satellite rainfall observations to model hydrologic processes, thus, providing a valuable 573

feedback to future hydrologic missions, including the NASA Global Precipitation 574

Measurement mission (http://gpm.gsfc.nasa.gov) and the NASA Soil Moisture Active 575

Passive mission (http://smap.jpl.nasa.gov; Entekhabi et al. 2010a), and to the 576

development or implementation of satellite rainfall observations into land data 577

assimilation systems.578
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Figure and table captions723

724
Figure 1: (a) 25 km grid covering the experiment domain and locations of OK Mesonet 725
stations (black dots). The triangular symbols represent OK Mesonet stations where 726
sufficient soil moisture observations were available at four different depths during the 727
study period. (b) Three year (2004-2006) cumulative WSR-88D rainfall (mm).728

729
Figure 2. Standard-normal deviate daily time series of surface soil moisture (a, c, e) and 730
root zone soil moisture (b, d, f) for a station average (a and b), and individual values at 731
the two stations at 94.845°W and 36.889°N (c and d) and at 98.526 °W and 35.842°N (e 732
and f). Corresponding WSR-88D rainfall time series is also shown in each panel. Summer 733
(June-September) time series are shown for the 3 years of 2004, 2005, 2006 and 734
separated by a vertical line in the plots.735

736
Figure 3. Cumulative hyetograph during the study period (2004-2006) of the WSR-88D 737
dataset, the satellite dataset (adjusted CMORPH), and the mean of ensembles produced 738
by perturbing the adjusted CMORPH rainfall with the LDAS error model (named LDAS 739
pert) and SREM2D (named SREM2D pert).740

741
Figure 4: Rainfall maps for the event of July 4th 2005 (3 time-steps).742

743
Figure 5. Experiment setup of the error propagation study744

745
Figure 6. Representative 4-month (June-September05) time series of cumulative rainfall 746
(a and b), surface (c and d) and root zone (e and f) soil moisture domain average. Left 747
panels show results from LDAS error model whereas right panels show results obtained 748
from SREM2D.749

750
Figure 7. Representative 4-month (June-September05) time series of cumulative rainfall 751
(a and b), surface (c and d) and root zone (e and f) soil moisture at a 25 km grid cell in the 752
eastern half of the region. Left panels show results from LDAS error model whereas right 753
panels show results obtained from SREM2D.754

755
Figure 8. Representative 4-month (June-September05) time series of cumulative rainfall 756
(a and b), surface (c and d) and root zone (e and f) soil moisture at a 25 km grid cell in the 757
western half of the region. Left panels show results from LDAS error model whereas 758
right panels show results obtained from SREM2D.759

760
Figure 9. Exceedance Ratio (upper panels) and Uncertainty Ratio (lower panels) for 761
rainfall (a and d), surface (b and e) and root zone (c and f) soil moisture determined at 762
three scales of aggregation. The box and vertical bars indicate the ensemble mean and 763
one standard deviation of the ER and UR values. Scales differ between the precipitation 764
UR panel and the soil moisture UR panels.765766

767
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Figure 10. Panels (a) and (d) show error statistics of rainfall of adjusted CMORPH and 768
of ensemble fields perturbed by LDAS and SREM2D models with respect to the 769
reference (WSR-88D) rainfall. Panels (b) and (c) show error statistics of the surface soil 770
moisture simulated by the Catchment model (CLSM) forced with adjusted CMORPH 771
precipitation and ensemble rainfall perturbed by LDAS and SREM2D with respect to soil 772
moisture simulated by CLSM forced with reference (WSR-88D) precipitation fields. 773
Similarly, panels (c) and (f) show error statistics for root zone soil moisture. Error bars 774
indicate the standard deviation of the metric across the ensemble.775

776
Table 1. Error model parameters777

778
Table 2. Mean and standard deviation of rainfall error (difference between 779
satellite/ensembles and radar in mm/hr) – conditional to radar or satellite being greater 780
than zero.781

782
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Figure 1: (a) 25 km grid covering the experiment domain and locations of OK Mesonet stations (black dots). The triangular symbols 
represent OK Mesonet stations where sufficient soil moisture observations were available at four different depths during the study 
period. (b) Three year (2004-2006) cumulative WSR-88D rainfall (mm).
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Figure 2. Standard-normal deviate daily time series of surface soil moisture (a, c, e) and root zone 
soil moisture (b, d, f) for a station average (a and b), and individual values at the two stations at 
94.845°W and 36.889°N (c and d) and at 98.526 °W and 35.842°N (e and f). Corresponding WSR-
88D rainfall time series is also shown in each panel. Summer (June-September) time series are 
shown for the 3 years of 2004, 2005, 2006 and separated by a vertical line in the plots.
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Figure 3. Cumulative hyetograph during the study period (2004-2006) of the WSR-88D dataset, the 
satellite dataset (adjusted CMORPH), and the mean of ensembles produced by perturbing the 
adjusted CMORPH rainfall with the LDAS error model (named LDAS pert) and SREM2D (named 
SREM2D pert).
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Figure 4: Rainfall maps for the event of July 4th 2005 (3 time-steps).



40

Figure 5. Experiment setup of the error propagation study
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Figure 6. Representative 4-month (June-September05) time series of cumulative rainfall (a and b), 
surface (c and d) and root zone (e and f) soil moisture domain average. Left panels show results 
from LDAS error model whereas right panels show results obtained from SREM2D.
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Figure 7. Representative 4-month (June-September05) time series of cumulative rainfall (a and b), 
surface (c and d) and root zone (e and f) soil moisture at a 25 km grid cell in the eastern half of the 
region. Left panels show results from LDAS error model whereas right panels show results obtained 
from SREM2D.
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Figure 8. Representative 4-month (June-September05) time series of cumulative rainfall (a and b), 
surface (c and d) and root zone (e and f) soil moisture at a 25 km grid cell in the western half of the 
region. Left panels show results from LDAS error model whereas right panels show results obtained 
from SREM2D.
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Figure 9. Exceedance Ratio (upper panels) and Uncertainty Ratio (lower panels) for rainfall (a and d), surface (b and e) and root zone (c and f) soil 
moisture determined at three scales of aggregation. The box and vertical bars indicate the ensemble mean and one standard deviation of the ER and UR 
values. Scales differ between the precipitation UR panel and the soil moisture UR panels.
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Figure 10. Panels (a) and (d) show error statistics of rainfall of adjusted CMORPH and of ensemble fields perturbed by LDAS and SREM2D 
models with respect to the reference (WSR-88D) rainfall. Panels (b) and (c) show error statistics of the surface soil moisture simulated by the 
Catchment model (CLSM) forced with adjusted CMORPH precipitation and ensemble rainfall perturbed by LDAS and SREM2D with respect to 
soil moisture simulated by CLSM forced with reference (WSR-88D) precipitation fields. Similarly, panels (c) and (f) show error statistics for root 
zone soil moisture. Error bars indicate the standard deviation of the metric across the ensemble.
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Table 1. Error model parameters

Units LDAS SREM2D

Mean of Log-Normal 

Multiplicative Error
dimensionless 1.00 1.00

Standard Deviation of Log-

Normal Multiplicative Error
dimensionless 0.40 0.20

False Alarm Mean Rain Rate mm/hr n/a 0.24

No-Rain Probability of Detection dimensionless n/a 0.96

Correlation Length for 

Multiplicative Error
km 90 90

Correlation Length for Successful 

Rain Detection 
km n/a 190

Correlation Length for Successful 

No-rain Detection
km n/a 70
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Table 2. Mean and standard deviation of rainfall error (difference between satellite/ensembles 
and radar in mm/hr) – conditional to radar or satellite being greater than zero.

Spatial scale 25km 50km 100km

mean std mean std mean std

Adjusted CMORPH 0.00 1.09 0.00 0.82 0.00 0.55

LDAS realizations -0.01 1.19 -0.01 0.90 -0.01 0.61

SREM2D realizations 0.00 1.14 0.00 0.84 0.00 0.56


