Variances and Correlations in Hybrid 4DVAR and the use of Climatological Ensembles

David Kuhl¹, Tom Rosmond², Craig Bishop³, Elizabeth Satterfield⁴

¹NRC/Naval Research Laboratory, Washington DC ²Science Application International Corp., Forks, WA ³Naval Research Laboratory, Monterey, CA ⁴NRC/Naval Research Laboratory, Monterey, CA

The 9th Workshop on Adjoint Model Applications In Dynamic Meteorology
Cefalu, Sicily, Italy 10-14 October 2011

Session: Hybrid Techniques
Thursday October 13, 2011 11:25AM

Motivation

- Many groups (CMC, NCEP and Met Office) have found that hybrid assimilation results in improved analyses and forecasts
- Part I: We tried our version of hybrid assimilation with the observation space 4D-Var Navy system and found similar results
- Part II: Contribution of variances versus correlations to the improvement
- Part III: Ensemble based climatological mean error covariance

Part I: NAVDAS-AR Hybrid System

$$\underline{\mathbf{P}}_{NAVDAS-AR} = \begin{bmatrix} \mathbf{P}_0^b & \mathbf{P}_0^b \mathbf{M}^T \\ \mathbf{M} \mathbf{P}_0^b & \mathbf{M} \mathbf{P}_0^b \mathbf{M}^T + \mathbf{Q} \end{bmatrix}$$

- P_{NAVDAS-AR} is the error covariance matrix for NAVDAS-AR specified at all time steps of the DA window
- We replace the conventional \mathbf{P}_0^b of NAVDAS-AR with a hybrid \mathbf{P}_0^b
- The hybrid \mathbf{P}_0^b is a combination of the conventional and ensemble covariances:

$$\mathbf{P}_{0_Hybrid}^{b} = (1 - \alpha)\mathbf{P}_{0_CONV}^{b} + \alpha\mathbf{P}_{0_ENS}^{b}$$

NAVDAS-AR Conventional $\mathbf{P}_{0\ CONV}^{b}$

$$\mathbf{P}_{0 CONV}^{b} = \mathbf{D}_{CONV}^{1/2} \mathbf{C}_{CONV} \mathbf{D}_{CONV}^{1/2}$$

- Variances (\mathbf{D}_{CONV}):
 - Geo-pot. height and temperature are in exact hydrostatic balance
 - Geo-pot. height and winds are approximately geostropically balanced in the extratropics and independent in tropics
- Correlations (\mathbf{C}_{CONV}):
 - Isotropic correlation model based on balanced and unbalanced correlations separable in the vertical and horizontal (see Chapter 4 Daley and Barker 2000)

Strengths:

- High rank
- Preserves some aspects of geophysical balances

Weaknesses:

- Not flow dependent
- Horizontal length scale independent of height may not apply in both troposphere and stratosphere
- Balance assumptions are incorrect in boundary layer and stratosphere

Flow Dependent Ensemble $\mathbf{P}_{0_ENS}^{b}$

$$\mathbf{P}_{0_{-}ENS}^{b} = \left[\frac{1}{K-1} \sum_{i=1}^{K} (\mathbf{x}_{i} - \overline{\mathbf{x}}) (\mathbf{x}_{i} - \overline{\mathbf{x}})^{T} \right] \odot \mathbf{C}$$

- Where:
 - $-\mathbf{x}_{i}-\overline{\mathbf{x}}$ is the ensemble perturbation
 - -K is the number of ensemble members
 - − C is localization matrix
- Ensemble is created using the 5-banded Ensemble Transform (ET)
 - Mean: 3-hour forecast of 4D-var analyses at high resolution
 - Covariances (balance of):
 - Operational 3D-Var variances
 - 3-hour forecast of ensemble members at low resolution

• Strengths:

- Flow dependent errors of the day
- Multivariate balances implied by the localized ensemble correlations

Weaknesses:

- Localization damages geophysical balances
- Cycled ensembles (ET, ETKF, EnKF, etc) often result in variances that are too small in some regions and too large in others. Getting this correct is a work in progress.

Experimental Setup

- Cycling analysis from Nov. 20, 2008 to Dec. 31, 2008
- Discard first 8 days of analysis for ensemble spin-up
- Model resolution: T119L42 outer, T47L42 inner
- Ensemble resolution (same as inner): T47L42
- 32 Ensemble Members
- Assimilating only conventional observations (no radiances)
- Verification:
 - 5-day forecasts from each analysis
 - Verification of forecasts with radiosondes

Conventional vs. Hybrid $\alpha = 0.5$

- Experiment comparison:
 - Blue is win for Conventional \mathbf{P}_{0-CONV}^{b}
 - Red is win for Hybrid $\mathbf{P}^b_{0_Hybrid}$
- Percentage reduction/increase of rms error relative to conventional
 - RMS error is computed relative to radiosondes at different forecast lead times 0-5 days
 - Forecasts were launched every 12 hours from Nov. 28, 2008 to Dec. 31, 2008
- Statistical significance of RMS errors difference

Conventional vs. Hybrid $\alpha = 0.5$

$$\mathbf{P}_{0_Hybrid}^{b} = 0.5\mathbf{P}_{0_CONV}^{b} + 0.5\mathbf{P}_{0_ENS}^{b}$$

Red is a win for Hybrid (alpha=0.5), Blue is a win for Conventional Similar results as others: hybrid assimilation produces better forecasts Our improvements to the conventional method are found in stratosphere

Conventional vs. Hybrid $\alpha = 1.0$

$$\mathbf{P}_{0_Hybrid}^{b} = \mathbf{P}_{0_ENS}^{b}$$

Red is a win for Ensemble (alpha=1.0), Blue is a win for Conventional Similar results as others: Ensemble alone is mixed result We clearly see ensemble contributes positive impact to the stratosphere

Part II: What part of $\mathbf{P}_{0_ENS}^{b}$ is contributing to the positive impacts?

- 1. Variances? (Is the improvement due to the ensemble contribution to the variance estimate?).
 - Test using $\mathbf{P}_0^b = \mathbf{D}_{ENS}^{1/2} \mathbf{C}_{CONV} \mathbf{D}_{ENS}^{1/2}$
- 2. Correlations? (ensemble length scales, or multi-variate correlations superior?).
 - Test using $\mathbf{P}_0^b = \mathbf{D}_{CONV}^{1/2} \mathbf{C}_{ENS} \mathbf{D}_{CONV}^{1/2}$

Variance/Correlation Impact

Ens. Var./Conv. Corr.

$$\mathbf{P}_{0}^{b} = \mathbf{D}_{ENS}^{1/2} \mathbf{C}_{CONV} \mathbf{D}_{ENS}^{1/2}$$

Ens. Corr./Conv. Var.

$$\mathbf{P}_{0}^{b} = \mathbf{D}_{CONV}^{1/2} \mathbf{C}_{ENS} \mathbf{D}_{CON}^{1/2}$$

Red is a win for Experiment, Blue is a win for Conventional
We clearly see the ensemble correlations is where the positive stratospheric impact is coming from.

Part III: Climatological Ensemble

- Archives of ensemble perturbations at 0,6,12, and 18 UTC were created from our 40 day ensemble run. The covariance of these perturbations provide estimate of the climatological error covariance.
- Motivated in part by Bishop and Satterfield's theory for the distribution of error variances given an inaccurate ensemble variance which shows that optimal error variance prediction is a (Hybrid) linear combination of a climatological error variance $\left(\sim \mathbf{P}_{_{0}}^{^{b}} \right)$ and ensemble variance $\left(\sim \mathbf{P}_{_{0}}^{^{b}} \right)$.

Strengths:

- Multivariate balances implied by the localized averaged ensemble correlations
- No need for online forecasts

• Weaknesses:

- Flow dependent errors of the day
- Localization damages balance

Our Climate Ensemble

- Collect 34 days (Nov. 28th to Dec. 31st) of 32 member flow dependent ensembles
- Collect into 4 diurnal groups (00Z, 06Z, 12Z and 18Z) of 1,088-members
- Produce smaller ensemble sets:
 - Use Singular Value Decomposition to calculate the eigenvectors of the members and arrange them from leading to trailing eigenvector.
 - Collect either 32, 128 or 800 leading eigenvector ensemble members

Our Climate Ensemble

Percentage of Total Variance			
	Number of Leading Eigenvectors		
	32	128	800
Band 1	22%	49%	95%
Band 2	14%	36%	91%
Band 3	17%	38%	92%
Band 4	17%	38%	91%
Band 5	24%	49%	95%

- The sets of leading eigenvectors (32, 128 or 800 members) are normalized to have the same variance as the total initial 1,088 member ensemble
- The localization (relative to 32-member flow dependent ensemble): 800-Climate is slightly larger, 128 and 32-Climate is the same

Flow Dependent compared to Climate

$$\mathbf{P}_{0_\mathit{Hybrid}}^b = \mathbf{P}_{0_\mathit{ENS}}^b$$

$$\mathbf{P}_{0_Hybrid}^{b} = \mathbf{P}_{0_CLIM}^{b}$$

Red is a win for Experiment, Blue is a win for Conventional Impact of clmatological ensemble is similar to flow dependent ensemble

Static Hybrid Assimilation

 Here, we linearly combine the conventional static error covariance matrix with the static climatological error covariance matrix.

$$\mathbf{P}_{0_Static}^{b} = (1 - \beta)\mathbf{P}_{0_CONV}^{b} + \beta\mathbf{P}_{0_CLIM}^{b}$$

Conventional vs. Static Hybrid $\beta = 0.5$

$$\mathbf{P}_{0_Static}^{b} = 0.5\mathbf{P}_{0_CONV}^{b} + 0.5\mathbf{P}_{0_CLIM}^{b}$$

Red is a win for Hybrid (alpha=0.0, beta=0.5), Blue is a win for Conventional The Hybrid 128-Member climate performs as well as the flow dependent hybrid. And it takes less online computational time.

Conclusions

- Part I: Our New Hybrid Assimilation System
 - Hybrid ensemble system improved forecasts
 - Ensemble on its own improved stratosphere but degraded troposphere
- Part II: Ensemble correlations and variances
 - Experiments switching variances and correlations suggest that ensemble correlations are the source of the improvements in stratosphere
- Part III: Climatological ensemble
 - The climatological ensemble can be used to improve the static background error covariance
- Experiments at operational resolutions and with a full set of operational observations are underway

Climate Hybrid Assimilation

• With climate hybrid assimilation we combine the of the conventional and climate to form a better static $\mathbf{P}_{0_Static}^b$ and then combine with the ensemble to capture any flow dependent structures:

$$\mathbf{P}_{0_Static}^{b} = (1 - \beta)\mathbf{P}_{0_CONV}^{b} + \beta\mathbf{P}_{0_CLIM}^{b}$$

$$\mathbf{P}_{0_Hybrid}^{b} = (1 - \alpha)\mathbf{P}_{0_Static}^{b} + \alpha\mathbf{P}_{0_ENS}^{b}$$

Only Static:

$$\alpha = 0.0$$
 $\beta = 0.5$

$$\mathbf{P}_{0_Hybrid}^{b} = 0.5\mathbf{P}_{0_CONV}^{b} + 0.5\mathbf{P}_{0_CLIM}^{b}$$

Red is a win for Hybrid (alpha=0.0, beta=0.5), Blue is a win for Conventional The Hybrid 128-Member climate performs basically as well as the flow dependent hybrid. And it takes less online computational time.

Full Mixture:

$$\alpha = 0.5$$
 $\beta = 0.5$

$$\mathbf{P}_{0_Hybrid}^{b} = 0.5 \left[0.5 \mathbf{P}_{0_CONV}^{b} + 0.5 \mathbf{P}_{0_CLIM}^{b} \right] + 0.5 \mathbf{P}_{0_ENS}^{b}$$

Red is a win for Hybrid (alpha=0.5, beta=0.5), Blue is a win for Conventional We are using the best static we've come up with, this is probably The best results we've seen.

Only Ensemble: $\alpha = 0.5$ $\beta = 1.0$

$$\mathbf{P}_{0_Hybrid}^b = 0.5\mathbf{P}_{0_CLIM}^b + 0.5\mathbf{P}_{0_ENS}^b$$

Red is a win for Hybrid (alpha=0.5, beta=1.0), Blue is a win for Conventional We are only using information from the ensemble, this shows that a PbN hybrid with no TLM/adjoint may be possible