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1.1.ENsemble Data Assimilation
1.2.Main issues

@ Key element of any DA schemes : background-error covariance
matrix B

@ ENDA provides a suitable framework to estimate B

o Simulation of the estimation
errors along analyses and
forecasts

o Documentation of error
covariances :
- over a long period
= “climatological error”

- for a particular date
= “error of the day”

(Evensen, 1997 ; Fisher,
2004 ; Berre et al., 2007) (From Ehrendorfer 2006)
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1.1.ENsemble Data Assimilation
1.2.Main issues

@ Only small size ensembles (10 — O(102)) are affordable
—> detrimental sampling noise for the estimation of B :

- noisy variance fields (Berre et al., 2007 ; Raynaud et al., 2008)

- spurious non-zero correlations at long distances
(Houtekamer and Mitchell, 1998 ; Buehner and Charron, 2007 ;
Pannekoucke et al., 2007)

@ Aims of the presentation :

- Introduce an objective filtering method for ensemble-based variances
- Present an application of the filter to a real NWP ensemble
- Estimate the impact of this filter on forecast scores

- Give some more general results about the benefits of using errors of
“the day”
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2.1.Empirical insight
2.2.Analytical results

Spatial structure of sampling noise
(Fisher and Courtier 1995 (Fig 6), Raynaud
et al., 2008)

variance

i b o o True variance field
V* ~ large scale
(a) N = 50,L_, =200km v

_ Sampling noise
Ve =V(N)—V* ~ large scale too?
— depend on L,

variance

—> Close link between the spatial
structures of sampling noise and
background-error
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gridpoint

(b) N = 50,L_, =1000km
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o Notations
-B : the estimated B matrix,

-B* = E[B] : the noise-free estimated B matrix,

-V¢ =B — B* : the sampling noise or random error component.

5/ 15



2.1.Empirical insight
2.2.Analytical results

Notations
-B : the estimated B matrix,

-B* = E[B] : the noise-free estimated B matrix,

-V¢ =B — B* : the sampling noise or random error component.

Analytically, it can be shown that the noise covariance matrix is

E[VVE | =

2 -

N -1

*

oB

*

where o stands for the Hadamard product :

¢ spatial structures of sampling noise and background-error are

directly related,

¢ the relative error of the variance estimation,

B(V®?] _ _2

(V)2

inversely proportional to the ensemble size V.
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2.1.Empirical insight
2.2.Analytical results

@ Verification of the analytical formula (N = 6 and N, = 1000)

noise variance

N
8

5

noise covariance

5

80 100 120 140 160 180 2
gridpoint

10
gridpoint

—> Very good agreement between empirical and analytical results.

@ Following Daley (1991), it can be shown that the noise

length-scale is

Lo
oL

LVc ==

— The sampling noise V¢ is smaller scale than the bkg-error field.
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3.1.Formulation

Objective filtering of sampling noise (Raynaud et al., 2009)

)

Notations
Let’s S be the spherical spectral transform, we define the spectral
fields :

S=8(V) S*=8(V*) 8°=§(V°)

Formulation ~ ~
An objective filter p, such that S*(n,m) ~ p(n)S(n,m), is defined by
(Berre et al. (2007))

1

= P(Se)’
e

p where P( . ) is the power spectrum.
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)

Notations
Let’s S be the spherical spectral transform, we define the spectral
fields :

S=8(V) S*=8(V*) 8°=§(V°)

Formulation ~ ~
An objective filter p, such that S*(n,m) ~ p(n)S(n,m), is defined by
(Berre et al. (2007))

1

= P(Se)’
e

p where P( . ) is the power spectrum.

@ p is a simple function of the noise/signal ratio,

o it can be estimated with the help of the E[VeV¢' | formula.
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4.1.Experimental setup
4.2.Results

Application to the Arpege model a® (Raynaud et al., 2009)

Experimental setup
@ Météo-France Arpege operational model

@ Ensemble of 6 independent 3D-Fgat assimilation experiments
(Berre et al., 2007, operational since July 2008) :

- explicit perturbation of observations
- implicit perturbation of background

- perfect model framework
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4.Application to a NWP context
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1.Experimental setup
4.2.Results

- The truncation of the filter depends on the

vertical level : it tends to decrease with altitude.

S o

filter

VO 500 hPa
wavelna:lrnhev 0 g
3
o
b3
4 % M @ W k0 1 W
Objective truncation
1 vo surf g g
surface - »J - Filter values are close to 1 in the largest scales,
wave number

since these components are well-sampled spatially.
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4.1.Experimental setup
4.2.Results

-
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5.1.Impact of the filtering procedure
5.2.Impact of errors “of the day”

Does spatial filtering of variances have an impact in the (very) end ?
(Raynaud et al., 2009) }
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So, the response is YES! Spatial filtering has a positive impact. J
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5.1.Impact of the filtering procedure
5.2.Impact of errors “of the day”

Impact of errors “of the day” on an extreme weather event :
case of the french storm of 10 February 2009

- 48h-forecasts using :
@ climatological variances

@ variances “of the day”
(including VO,D,T,Ps,Q)

- Analysis valid on 10/02/09 at
00 UTC
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About the filtering of variances

@ Close link between spatial structures of background-error and
sampling noise

@ Objective filter based on noise-to-signal ratio

@ In a NWP context, this filter is robust and nearly cost-free

@ Filtered variance maps accurately reflect the underlying flow
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About the filtering of variances

@ Close link between spatial structures of background-error and
sampling noise

@ Objective filter based on noise-to-signal ratio
@ In a NWP context, this filter is robust and nearly cost-free

@ Filtered variance maps accurately reflect the underlying flow

About impact

@ Filtered variances improve the background fit to observations and
provide more accurate forecasts than raw variances

@ The use of a complete set of variances “of the day” results in
better forecasts, especially in cases of intense weather events
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Perspectives

@ Validation and tuning of the filtered variances (Desroziers et al.,
2005).

@ Use of such filtered flow-dependent variances in the operational
Arpege B matrix.

¢ Ultimate goal : combined use of filtered flow-dependent variances
and correlations (Pannekoucke et al., 2007).



Perspectives

@ Validation and tuning of the filtered variances (Desroziers et al.,
2005).

@ Use of such filtered flow-dependent variances in the operational
Arpege B matrix.

o Ultimate goal : combined use of filtered flow-dependent variances
and correlations (Pannekoucke et al., 2007).

Thank you for your attention! |




Details on the calculation of the objective filter p

¢ Estimation of the noise spectrum P(S¢)
E[VeV®] = 12:B* 0 B* — needs to estimate B* = F[B]

With Ergodic + homogeneous hypotheses :

E[B,]

Mz

- B, is the local spatial covariance at gridpoint 1,
- N; is the number of dates in the time average,
- N; is the number of gridpoints over the globe.

In the isotropic case, E[B;] = C (1D) and :

P(S°) = %L@?)

o Estimation of the noise-free variance spectrum P(g*)
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