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Motivation
� Adjoint Method:

� POD Method:
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Proper Orthogonal Deomposition (POD)
� Statistial tool to analyze experimental data:The POD is used to analyze the set of realizations with a view to extrat-ing dominant features and trends (oherent strutures alled patterns inspae)
� Redued Order Modeling (ROM):The POD is used to provide a relevant set of basis funtions with whihwe an identify a low-dimensional subspae on whih to onstrut a modelby projetion of the governing equations
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POD
� A set of s snapshots E = fe1; e2; � � � ; esg � <n are olleted for somephysial proess taken at position e.
� Construt the ovariane matrix Q � <n�nQ = EET (1)
� P = fp1; p2; p3; � � � g are eigenvetors of a n�n eigenvalue problem witheigenvalues �1 � �2 � �3 � � �
� Selet the most dominant eigenmodes (patterns) based on the dominanteigenvalues �i

Inverse Shallow Water Flow Modeling using Model Redution; Adjoint Workshop, May 19, 2009 (slide 5)



Ensemble Approah

� An ensemble of snapshot vetors of the forward model simulations isolleted.�The snapshots are perturbations with repet to estimated parameters k;
ek(ti) = �Mi [xb(ti�1); k℄�k = Mi [xb(ti�1); k + �k℄�Mi [xb(ti�1); k℄�k (2)

� A redued POD basis is obtained on the basis of this ensemble.
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Ensemble Approah
�The redued basis P is used to obtain approximate objetive funtion:

J(�) = �TB�1� + ∑i=1 [fy(ti)�H(xb(ti))g��H�(ti ;�)℄TR�1[fy(ti)�H(xb(ti))g � �H�(ti ;�)℄ (3)� is a redue time-varing state vetor;
( �(ti)� ) = ( M̃i M̃0 I ) ( �(ti�1)� ) (4)M̃i and M̃ are redued dynamis operators whih are omputed as:

M̃i = P T �Mi�xb(ti�1)P (5)
M̃ = P T (�Mi�1 ; � � � ; �Mi�u ) (6)
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Ensemble Approah
�We ompute the jaobian �Mi�xb by perturbing the nonlinear operator Mialong pattern diretion.�Mi�xb(ti�1)ph = Mi [xb(ti�1) + "ph; k℄�Mi [xb(ti�1); k℄" (7)
�Now the redued dynamis operator M̃i is obtained as:

M̃i = P T ( �Mi�xb(ti�1)p1; � � � ; �Mi�xb(ti�1)pr) (8)
�The dimension of redue model is smaller than that of original model.� Redued model has linear harateristis. So it is easy to build a adjointmodel for the omputation of gradient.
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The DCSM(v5)
� Large part of the area lies below mean sea water level� 1 Feb 1953: severe storm surge, asualities in southwestern part�Delta projet: dikes, moveable surge barriers at the entrane of Harbor�Water level predition system
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Model Area
� Around 20; 000 grid points� Based on Shallow water equations
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DCSM(v5)
�One outer iteration(�) with POD based alibration method:
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Experiment
� Calibration run: 29 De 2006 to 30 Jan 2007�Measurement data are used from : 01 Jan 2007 to 30 Jan 2007� inludes two spring-neap yles.� Assimilation stations: 24 Validation stations: 12�No. of parameters: 13 Depth: 10 Bottom Frition: 3
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Experiment
�Waterlevel timeseries at Den Helder
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Experiment
� Ensemble: based on forward model simulations of 1st four days : 01 Jan2007 to 04 Jan 2007� Eah snapshot vetor ontains the waterlevels h, veloities u and v.� Ensemble size: 390 snapshot vetors
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Results
� A redued model is formed with 95% aptured energy (24 POD modes)�The redued model operates on <24+13� A 10% redution in the ost funtion after one outer iteration.
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Assimilation Results
� English hannel: 18 assimilation stations are used� An overall improvement of 1:2m is found in the English Channel after2nd outer iteration
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Assimilation Results
� A signi�ant improvement is found in the north and middle regions of theDuth oast� A slight improvement in the southern region.
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Validation Results
� English hannel: 8 validation stations are used� An overall improvement of 1:0m is found in the English Channel
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Validation Results
� A signi�ant improvement is found in the middle region of Duth oast�No improvement in the northern region during 2nd outer iteration� Again a slight improvement in the southern region.
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results(ontd)
� Computational ost of the algorithm:�Number of parameters: 13The omputational ost is given in terms of No. of simulationsof the original DCSM model.bakground ost funtion : 3Ensemble olletion(only one): 3Redued model formulation: 1/2Optimization :negligible( 1/20)� So the omputational ost of the entire optimization is < 7 model sim-ulations.
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Conlusions and Future Work
�Negligible Optimization ost with the POD based model redution teh-nique.� Classial method, adjoint of tangent linear model� POD based method gives adjoint of linear redue forward model� Adjoint method gives exat gradient, more aurate� POD based method gives approximate gradient.�The POD method is dependent on the number of parameters. If thenumber of parameters are too large, the size of ensemble is too big andit is diÆult to �nd a good approximate model.�The ost of ensemble in eah outer iteration an be redued by using thesame ensemble.
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