Towards quantifying variance captured by observations in the California Current System

Brian Powell, University of Hawai`i Emanuele Di Lorenzo, Georgia Tech Many thanks: Andrew Moore, Hernan Arango

Model/Obs Comparison

Innovation Vector: $\mathbf{d} = \mathbf{y}^o - \mathcal{H}\mathbf{x}^b$,

where, y^{o} are observations, x^{b} is background circulation, x^{t} truth

Given errors of:	$\epsilon^b = \mathbf{x}^b(0) - \mathbf{x}^t(0)$
	$\epsilon^o = \mathbf{y}^o - \mathcal{H} \mathbf{x}^t$

Then,

$$\left\langle \mathbf{d}\mathbf{d}^{T} \right\rangle = \left\langle \left(\epsilon^{o} - \mathbf{G}\epsilon^{b} \right) \left(\epsilon^{o} - \mathbf{G}\epsilon^{b}
ight)^{T}
ight
angle$$

= $\mathbf{R} + \mathbf{G}\mathbf{D}\mathbf{G}^{T}$

where $\mathbf{G} = \mathbf{H}\mathbf{M}$

Representers & Array Modes

Bennett (2001) introduces the representer functions, which are: $\mathbf{H}\mathcal{R} = \mathbf{G}\mathbf{D}\mathbf{G}^{T}$

where,

$$\mathcal{R} = (\mathbf{r}_m)$$

hence,

 $\mathbf{r}_m = \mathbf{M} \mathbf{D} \mathbf{G}^T \delta(\mathbf{y}_m^o)$

Decompose the stabilized representer matrix: $\mathbf{R} + \mathbf{G}\mathbf{D}\mathbf{G}^T = \mathbf{Z}\mathbf{\Phi}\mathbf{Z}^T$

Procedure

Generate: ZΦZ^T via Lanczos
Inspect Φ for K dominant modes
Identify M dominant elements of Z_k
Generate: r_m for m = (1,..., M)
Construct: Ψ_k for k = (1,..., K)

Assimilation

Traditional: solve for an analysis estimate via: $\left(\mathbf{R} + \mathbf{G}\mathbf{D}\mathbf{G}^T\right)\beta = \mathbf{d}$

and apply,

$$\mathbf{x}^a = \mathbf{x}^b + \mathcal{R}\beta$$

This is equivalent to the combination of array modes (Bennett, 1985): $_{K}$

$$\mathbf{x}^{a} = \mathbf{x}^{b} + \sum_{k=1}^{K} \lambda_{k}^{-1} \mathbf{Z}_{k}^{T} \mathbf{d} \Psi_{k}$$

The California Current System

Jason-1

NALAMALAMA NALAMALAMA NALAMALAMA NALAMALAMA NALAMALAMA NALAMALAMA

CalCOFI

SST Modes from SSH

Revised Case

Original

The second to a superior and the second of t

Revised

____ A have

0.111 0.104 0.098

0.092 0.086 0.080

0.073

 $\begin{array}{c} 0.067\\ 0.061\\ 0.055\\ 0.048\\ 0.042\\ 0.036\\ 0.030\\ 0.024 \end{array}$

0.017

0.005

-0.001-0.008

-0.014-0.020

-0.026

-0.020-0.032-0.039-0.045-0.051

-0.057-0.057-0.064-0.070-0.076-0.082

-0.088

