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MOTIVATION

An important assumption made in variational and ensemble data 
assimilation is that the state variables and observations are Gaussianassimilation is that the state variables and observations are Gaussian 
distributed

Note: The difference between two Gaussian variables is also a 
Gaussian variable.

Is this true for all state variables?

Is this true for all observations of the atmosphere?
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REAL LIFE EXAMPLES

This data is column water vapour climatologies from the Oklahoma ARM-
SGP site from 1997-2000 where the data are of when a boundary layer 
cloud was presentcloud was present

We have taken the observations and have sorted them by season as well 
as for the whole year.  The data was collected using a microwave 
radiometer.
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BEST LOGNORMAL AND NORMAL FITS FOR CWV FOR ALL SEASONS
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Current Techniques used with non-Gaussian Variables

1) Transform by taking the LOGARITHM of the original state variable.  This 
then makes the new variable ALMOST GAUSSIAN. Minimize the cost 
function with respect to this variable, TRANSFORM BACK and initialize 
with this state. STATE FOUND IS A NON-UNIQUE MEDIAN OF THE 
ORIGINAL VARIABLE, (Fletcher and Zupanski 2006a, 2007).

2) Assumed Gaussian assumption and BIAS CORRECT2) Assumed Gaussian assumption and BIAS CORRECT.

3) Using a Markov-Chain Monte-Carlo approaches (Posselt et al. 2008)
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PROBLEMS ASSOCIATED WITH CURRENT 
TECHNIQUESQ

ASSUMED GAUSSIAN:

IMPACT 1: Wrong probabilities assigned to outliers.

IMPACT 2: Probabilities assigned to unphysical values.

IMPACT 3: Wrong statistic used to approximate the true distribution of the 
random variable.
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MISCONCEPTIONS ABOUT LOGNORMAL DATAMISCONCEPTIONS ABOUT LOGNORMAL DATA 
ASSIMILATION

1) The theor holds as the backgro nd sol tion is independent of the tr e1) The theory holds as the background solution is independent of the true 
solution, it is only an approximation and statistically has no information 
about the true solution.

2) The theory holds for the observational component as the observations 
are independent of the observations operator and vice-versa.

3) If two solutions have a relative error of 50% then we are still out by a 
factor of two in both cases no matter what order of magnitude.
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4D LOGNORMAL DATA ASSIMILATION
Unlike with the three dimensional version of variational data 
assimilation, the four dimensional version is defined as a weighted 
least squares problem. 

Th G i i ht d l t h t 4D VARThe Gaussian weighted least squares approach to 4D VAR 
is defined through a calculus of variation problem with initial 
conditions found through the adjoint.

This weighted least squares approach can be defined for aThis weighted least squares approach can be defined for a 
lognormal framework, which is defined by the following inner product
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As with the Gaussian case we know that the first variation of the functionalAs with the Gaussian case we know that the first variation of the functional 
defined on the previous slide is equivalent to
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The solution is a median and not the mode and hence is independent 
of the variance.

We need to define the functional as
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Current Gaussian approach
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PROBABILITY APPROACH
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The expression above is Bayes theorem for a multi-event probability 
situation.  It can be simplified through using conditional independence.
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Taking the negative logarithm of the circled pdf in the previousTaking the negative logarithm of the circled pdf in the previous 
slide results in  
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This can now be used to derive a 4D VAR system for any 
distributed random variable
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Results with the Lorenz 1963 modelResults with the Lorenz 1963 model
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We are going to be using the hybrid Gaussian-lognormal distribution andWe are going to be using the hybrid Gaussian lognormal distribution and 
comparing it with the transform approach.  The associated cost function is 
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Example with the Lorenz 1963 model

The three non-linear differential equations are given by (Lorenz 1963)

yxx σσ +−=&
28AND108β

zxyz
yxxzy

y
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&

&
28AND10,

3
=== ρσβ

zxyz β−=

5606.22  AND  4841.5,4458.5 000 =−=−= zyx

Going to assume x and y components and the associated obs are 
Gaussian z is lognormalGaussian, z is lognormal

(Fletcher and Zupanski 2007)
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Plots of the differences in the 
trajectories with manytrajectories with many 

accurate obs with short 
assimilation windows

Note transform andNote: transform and 
hybrid approach 

quite similar
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When assimilation window is 
l (1000t ) ith f dlarge (1000ts) with fewer and 

less accurate obs, hybrid 
approach is more accurate

Transform approach 
converges quickly toconverges quickly to 
the wrong solution

CSU/CIRA  Steven J. Fletcher                                             8th Adjoint Workshop, May 21st 2009 29



Conclusions and Further Work
Careful which statistic to use to analyses y
Mode is closer to the true trajectory in the Lorenz 63 model
Possible to assimilate variables of mixed types simultaneously 
Combine other distributions?? i.e. Gamma, Normal, Lognormal
More consistent methods for finding positive definite variables
N d t h b k d i t i (if l dNo need to change background error covariance matrix (if already 

using the transform approach)
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