



#### Intercomparison of variational, EnKF, and ensemble-4D-Var data assimilation approaches in the context of deterministic NWP

#### **Project Team:**

Mark Buehner Cecilien Charette Bin He Peter Houtekamer Herschel Mitchell Mark Buehner Data Assimilation and Satellite Meteorology Section Meteorological Research Division May 21, 2009

The 8<sup>th</sup> Workshop on Adjoint Model Applications in dynamic Meteorology May 18-22, 2009, Tannersville, PA

## Introduction

- Goal: compare 4D-Var and EnKF approaches in the context of producing global deterministic analyses for operational NWP
- 4D-Var and EnKF:
  - both operational at CMC since 2005
  - both use GEM forecast model
  - both assimilate similar set of observations using mostly the same observation operators and observation error covariances
- 4D-Var is used to initialize medium range global deterministic forecasts
- EnKF (96 members) is used to initialize global Ensemble Prediction System (20 members)

Page 2 – June 1, 2009





## Contents

- Brief description of operational systems
- Configurations used for the intercomparison
- Idealized experiments:
  - effect of covariance localization
  - effect of covariance evolution
- Full analysis-forecast experiments (February 2007)
  - scores from analyses and 56 6-day deterministic forecasts (vs. radiosondes and analyses)
  - precipitation scores against GPCP analyses
- Conclusions







# **Operational Systems**

- 4D-Var
  - operational since March 2005
  - incremental approach: ~35km/150km grid spacing, 58 levels, 10hPa top
- EnKF
  - operational since January 2005
  - 96 ensemble members: ~100km grid spacing, 28 levels, 10hPa top

#### Dependence between systems

 EnKF uses 4D-Var bias correction of satellite observations and quality control for all observations



Page 4 – June 1, 2009



# **Experimental Configurations**

Modifications relative to operational systems

- Same observations assimilated in all experiments:
  - radiosondes, aircraft observations, AMVs, US wind profilers, QuikSCAT, AMSU-A/B, surface observations
  - eliminated AIRS, SSM/I, GOES radiances from 4D-Var
  - quality control decisions and bias corrections extracted from an independent 4D-Var experiment
- Increased number of levels in EnKF to match 4D-Var
- Increased horizontal resolution of 4D-Var inner loop to match EnKF (but 4D-Var uses Gaussian Grid, EnKF uniform lat-lon)
- Other minor modifications in both systems to obtain nearly identical innovations (each tested to ensure no degradation)





# **Experimental Configurations**

- 3/4D-Var:
  - 3D-FGAT and 4D-Var with B matrix nearly same as operational system (NMC method)
  - 3D-FGAT and 4D-Var with flow-dependent B matrix from EnKF at middle or beginning of assimilation window (same localization parameters as in EnKF)
  - Ensemble-4D-Var (En-4D-Var): use 4D ensemble covariances to produce 4D analysis increment without TL/AD models (most similar to EnKF approach)
- EnKF:
  - Deterministic forecasts initialized with EnKF ensemble mean analysis (requires interpolation from ~100km to ~35km grid)





# **Experimental Configurations**

#### Remaining differences between two systems

- Differences in spatial localization (most evident with radiance obs):
  - 4D-Var:  $\mathbf{K} = (\rho \circ \mathbf{P})\mathbf{H}^{\mathsf{T}} (\mathbf{H}(\rho \circ \mathbf{P})\mathbf{H}^{\mathsf{T}} + \mathbf{R})^{-1}$  (also En-4D-Var approach)
  - EnKF:  $\mathbf{K} = \rho \circ (\mathbf{P} \mathbf{H}^{\mathsf{T}}) (\rho \circ (\mathbf{H} \mathbf{P} \mathbf{H}^{\mathsf{T}}) + \mathbf{R})^{-1}$
- Differences in temporal propagation of error covariances: •
  - 4D-Var: implicitly done with TL/AD model (with NLM from beginning to middle of assimilation window)
  - EnKF: explicitly done with NLM in subspace of background ensemble (also En-4D-Var approach)
- Differences in solution technique:
  - 4D-Var: limited convergence towards global solution (30+25 iterations)
  - EnKF: sequential-in-obs-batches explicit solution (not equivalent to global solution)
- Differences in time interpolation to obs in assimilation window: •
  - 4D-Var: 45min timestep, nearest neighbour (NN) interpolation in time
  - EnKF: 90min timestep, linear interpolation in time
  - En-4D-Var: 45min, NN for innovation, 90min, linear interp. for increment

Page 7 – June 1, 2009



Canada

Canada

# Single observation experiments

Difference in vertical localization between 3D-Var and EnKF

- AMSU-A ch9
- peak sensitivity near 70hPa
- with same B, increment slightly larger & less local with 3D-Var than EnKF

 without localization increments nearly identical

Environment

Canada

Canada



Canadä

# **Single observation experiments**

Difference in vertical localization between 3D-Var and EnKF

- all AMSU-A channels (4-10)
- with same B, largest differences near model top

- entire temp. profile of nearby raob
- all experiments give more similar increments
- same general shape as with AMSU-A in layer 150hPa-700hPa







Environment

Canada

# **4D error covariances**

#### Temporal covariance evolution



### **Single observation experiments** Difference in temporal covariance evolution

- radiosonde temperature observation at 500hPa
- observation at beginning of assimilation window (-3h)
- with same B, increments very similar from 4D-Var, EnKF
- contours are 500hPa GZ background state at 0h (ci=10m)



4D-Var with Benkf



contour plots at 500 hPa

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8





Environnement Canada

110

120

130

140

150

Page 11 – June 1, 2009

65

60

55

50

45

40

35

100

### Single observation experiments Difference in temporal covariance evolution

- radiosonde • temperature observation at 500hPa
- observation at middle of assimilation window (+0h)
- with same **B**, increments very similar from 4D-Var, EnKF

65

60

55

50

45

40

35

Environment

Canada

100

110

Environnement

Canada

120

130

140

contours are • 500hPa GZ background state at 0h (ci=10m)



4D-Var with Benkf



contour plots at 500 hPa

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

150 Page 12 - June 1, 2009



### **Single observation experiments** Difference in temporal covariance evolution

- radiosonde temperature observation at 500hPa
- observation at end of assimilation window (+3h)
- with same B, increments very similar from 4D-Var, EnKF

65

60

55

50

45

40

35

Environment

Canada

100

110

Environnement

Canada

120

 contours are 500hPa GZ background state at 0h (ci=10m)



4D-Var with Benkf

130

140

150

Page 13 - June 1, 2009



contour plots at 500 hPa

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8





# Analysis and Forecast Verification Results – 4D-Var, EnKF and 4D-Var with EnKF covariances

# EnKF (ensemble mean) vs. 4D-Var-Bnmc and 4D-Var-Benkf vs. 4D-Var-Bnmc



Page 14 – June 1, 2009



### Analysis Results (O-A) – global



# Forecast Results: EnKF (ens mean) vs. 4D-Var-Bnmc



# Forecast Results: EnKF (ens mean) vs. 4D-Var-Bnmc



# Forecast Results: 4D-Var-Benkf vs. 4D-Var-Bnmc



# Forecast Results: 4D-Var-Benkf vs. 4D-Var-Bnmc



# **Results – 500hPa GZ anomaly correlation**

Verifying analyses from 4D-Var with Bnmc



# **Forecast Results – Precipitation**

24-hour accumulation verified against GPCP analyses



# Analysis and Forecast Verification Results – Differences in covariance evolution

# En-4D-Var vs. 3D-Var-Benkf and En-4D-Var vs. 4D-Var-Benkf



Page 22 – June 1, 2009



### **Temporal covariance evolution**



# Forecast Results: En-4D-Var vs. 3D-Var-Benkf



# Forecast Results: En-4D-Var vs. 3D-Var-Benkf



## Forecast Results: En-4D-Var vs. 4D-Var-Benkf



# Forecast Results: En-4D-Var vs. 4D-Var-Benkf



# **Results – 500hPa GZ anomaly correlation**

Verifying analyses from 4D-Var with Bnmc

![](_page_27_Figure_2.jpeg)

# Conclusions

Based on 1-month data assimilation experiments

- Deterministic forecasts initialized with 4D-Var with operational B and EnKF (ensemble mean) analyses have comparable quality (4D-Var better in north, EnKF better in tropics and south but with spin-up problem in tropics)
- Largest impact (~10h gain at day 5) in southern extratropics for 4D-Var with flow-dependent EnKF B vs. 4D-Var with operational B (also better in tropics)
- Use of 4D ensemble B (i.e. En-4D-Var) improves on 3D-Var, but inferior to 4D-Var (both with 3D ensemble B) and least sensitive to covariance evolution in tropics

Page 29 – June 1, 2009

![](_page_28_Picture_6.jpeg)

![](_page_28_Picture_7.jpeg)

Environment

Environnement

Canada