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Background

Reservoir management represented as a model-based 
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J. D. Jansen et al. [2005]
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Background

Goal

To find the maximum a posteriori estimate of the log 
permeability field by solving the minimization problem:

� represent the vectors of observed and predicted 

production data at  time    ,

� the uncertain log permeability vector,     

� the prior knowledge about log permeability,     

� covariance matrix for the log permeability vector,    

� the covariance matrix for data measurements errors
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MRVDA

Advantage of adjoint method
� A gradient based algorithm with gradient calculated by adjoint

method which requires one adjoint solution regardless of the 
number of model parameters

Disadvantage of adjoint method
� Implementation of the adjoint model

Solutions
If we re-parameterize the permeability field then:

� we can calculate the gradient by perturbations: computationally 
expensive for large number of uncertain parameters

� we can construct the low-order approximation of the tangent 
linear reservoir model   for which the low-order adjoint model is 
derived
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MRVDA

Proper Orthogonal Decomposition (Lumley 1967) also knows as

� Karhunen- Loève (K-L) Transform
Loève (1946)
Karhunen (1946)

� Empirical Orthogonal Function
� Principal Component Analysis (1986)

Application 
� Statistical tool to analyze experimental data 

The POD is used to analyze the set of realizations with an aim to extract
dominant features and trends (coherent structures called patterns in space)

� Reduced Order Modeling (ROM) 
The POD is used to provide a relevant set of basis functions with which a low-
dimensional subspace is identified, then the reduced model is constructed by 
projection of the governing equations on that  subspace
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MRVDA

Classical adjoint approach

MRVDA

Optimization

High-order 
nonlinear 
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linear 

adjoint model
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Vermeulen, P.T.M., Heemink, A.W. [2006]

Altaf, U.M., Inverse shallow water flow modeling
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MRVDA

High-order nonlinear model         high-order linearized model

Consider high-order nonlinear reservoir model

Tangent linear approximation of the high-order nonlinear reservoir 
model around                 can be rewritten as

where

and
Step 0
Re-parameterize permeability field using set of realizations
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MRVDA

High-order linearized model           low-order model

Step 1

Generate number of system solutions and define snapshots as

Step 2

Apply POD on pressure and saturation snapshots separately and use 
it to derive projection subspace

Project the high-order linearized model

into low-order linear model
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MRVDA

Step 3

Approximate the matrices of the low-order model

Using the chain rule differentiation

Using finite difference approximation we get
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MRVDA
Re-parameterization

High-order Reservoir Model Simulation

Low-order Model Simulation

Gradient Calculation

Reduced Objective Function 
Calculation

Initial Parameters

Objective Function Calculation

Converged? Done

Building of The Low-order Model

Converged?

Low-order Adjoint Model Simulation

Sup Optimal Parameters

Parameters Update

Snapshots Simulation
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MRVDA

Computational complexity

� Preprocessing cost of generating representative snapshots
spanning a large portion of possible permeability field

� Preprocessing cost of solving eigenvalue problems

� Preprocessing cost of building low-order system matrices

� As many model runs + multiplications of Jacobians with 
projection matrix as many state patterns

� As many model runs + multiplications of Jacobians with 
projection matrix as many parameters

� The cost of solving dense low-order linear model
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Study case

Reservoir model assumption

�3 dimensional (60x60x7 with 
18553 active grid blocks)

�Two-phase (oil-water)

�No-flow boundaries at all sides 

Measurements

�Bottom hole pressures from 
injectors each 60 days during 3 
years

�Flow rates from producers each 
60 days during 3 years

Gijs van Essen [2006]

Producer

Injector
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Results

Model-Reduced VDA
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Results
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Results

Classical adjoint approach

True log  perm field Prior log  perm field Adjoint log  perm field
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Results

Comparison of the methods
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Conclusions

� Model-reduced variational data assimilation does not require the 
implementation of the adjoint of the tangent linear model of the 
original reservoir model

� Model-reduced variational data assimilation gives the estimates 
comparable to those from data assimilation using an adjoint
method (comparable match and predictions)

� Model-reduced variational data assimilation is easy to implement 
and treats simulator as a black-box

� If we have the adjoint code then we do go for the classical 
approach



June 1, 2009 20

Questions?
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MRVDA: Proper Orthogonal Decomposition

Suppose we have an ensemble

POD seeks for the best / optimal linear representations of the 
members of the set     :

Optimality condition

Solution

The above optimization problem is solved by eigenvalue analysis of 
the correlation matrix             ,  that is
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MRVDA: Proper Orthogonal Decomposition

An optimal basis is given by

where     is the eigenvector corresponding to i-th largest eigenvalue
of the matrix 

The relative importance present in each basis vector 

Choose     such that

where     denotes the fraction of  the cumulative relative importance 
we want to capture
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MRVDA: Reduced Order Modeling

Consider a general high-order nonlinear discrete reservoir system

The aim of the reduced order modeling is to find the projection              
with                 and                where                   to obtain the 
low-order system

whose trajectories                         evolve in     -dimensional space
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