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Reservoir management represented as a model-based
closed-loop controlled process
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Goal

To find the maximum a posteriori estimate of the log
permeability field by solving the minimization problem:

Np
mejn J(0)= %(9 _gPrior )T Pg_l (9 _grier ) _|_l Z(ylgbs = (9))T ]‘)i_l (ylgbs = (9))

i=l1

> ¥/°,V¥, represent the vectors of observed and predicted
production data at time ¢,

> 0 the uncertain log permeability vector,

> 077 the prior knowledge about log permeability,

> P, covariance matrix for the log permeability vector,

> P. the covariance matrix for data measurements errors
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Advantage of adjoint method

» A gradient based algorithm with gradient calculated by adjoint
method which requires one adjoint solution regardless of the
number of model parameters

Disadvantage of adjoint method
» Implementation of the adjoint model

Solutions
If we re-parameterize the permeability field then:

» we can calculate the gradient by perturbations: computationally
expensive for large number of uncertain parameters

» we can construct the low-order approximation of the tangent
Icilne_ar dreservoir model for which the low-order adjoint model is
erive
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Proper Orthogonal Decomposition (Lumley 1967) also knows as

> Karhunen- Loeve (K-L) Transform
Loeve (1946)
Karhunen (1946)

» Empirical Orthogonal Function

» Principal Component Analysis (1986)

Application
» Statistical tool to analyze experimental data

The POD is used to analyze the set of realizations with an aim to extract
dominant features and trends (coherent structures called patternsin space)

» Reduced Order Modeling (ROM)

The POD is used to provide a relevant set of basis functions with which a low-
dimensional subspace is identified, then the reduced model is constructed by
projection of the governing equations on that subspace
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Classical adjoint approach

Re-parameterization ‘

Re-parameterization

High-order
nonlinear

reservoir model
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Vermeulen, P.T.M., Heemink, A.W. [2006]

Altaf, U.M., Inverse shallow water flow modeling
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High-order nonlinear model ‘ high-order linearized model

Consider high-order nonlinear reservoir model
x(¢)=1,(x(t_,),0)eR", h0010°) h,=0[]1010°%

Tangent linear approximation of the high-order nonlinear reservoir
model around (x’(z,),0°) can be rewritten as

Ax(t) = of, (x(ti_l),e)Ax(ti_l)+ of, (X(ti_l),G)Ae
ox(t, )
where
AO=0-0" and  Ax(t,)=x(z)-x"(t)
Step O

Re-parameterize permeability field using set of realizations ®={91,...,9K9}

AO=Pr’, r’eR",1,[] h,
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High-order linearized model ‘ low-order model

Step 1
Generate number of system solutions and define snapshots as
AX(t) =1, (x(t,),0" + P°r’) -1, (x"(z.,).0")
Step 2
Apply POD on pressure and saturation snapshots separately and use
it to derive projection subspace

AX(t)~Pr(t)  reR,I0 h

Project the high-order linearized model

of, (x(t,,),0) AX(t )+ of, (x(t,.,),0)
ox(t._,) i 00

AX(t) = A0

into low-order linear model
r(t,)=Nr(_ )+ Niera
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Step 3
Approximate the matrices of the low-order model

L LUL)) R N = pr( A XGD O o,
Ox(t,_ 00

Using the chain rule differentiation

O (X' () + Pr().0°) o (X' () + Pr(). 0 ) ox) O (X' () +Pr(,),0")
or,(t,,) - ox(t,_,) or,(t.) ox(t,.,) J

of, (xX"(1.,),0" +Pr’)  of (x"(1.,).0" +Pr’) a9  of (x"(z.,).0" +P’r’) y
or’ - 00 or’ or’ /

J J

Using finite difference approximation we get
of, (x"(1.,).0") b (x"(t,)+P,.0" )1, (x"(¢,,),0")

ox(t.,) £
of, (x'(1.,),0") b« f(x"(t),0" + 59P5 )1 (x"(1,,),0")
&

00
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Computational complexity

» Preprocessing cost of generating representative snapshots
spanning a large portion of possible permeability field

» Preprocessing cost of solving eigenvalue problems

» Preprocessing cost of building low-order system matrices

> As many model runs + multiplications of Jacobians with
projection matrix as many state patterns

> As many model runs + multiplications of Jacobians with
projection matrix as many parameters

» The cost of solving dense low-order linear model



Study case

Gijs van Essen [2006]

| Producer

I Injector
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Reservoir model assumption

»3 dimensional (60x60x7 with
18553 active grid blocks)

»Two-phase (oil-water)
»No-flow boundaries at all sides

Measurements

»Bottom hole pressures from
injectors each 60 days during 3
years

»Flow rates from producers each
60 days during 3 years
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Model-Reduced VDA

Nr of model Objective Permeability State Number of
simulations function patterns patterns  snapshots
0 - 270 22 - -
1 ~ 67 130 22 29+5 200
True log perm field Prior log perm field Estimated log perm field

Layer: 1 Layer: 2 Layer: 3 Layer: 1 Layer: 2 Layer: 1 Layer: 2 Layer: 3
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Liquid rate in the
production wells
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Classical adjoint approach

Values of the objective function at the successive iterations
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Liquid rate in the
production wells
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Comparison of the methods

Method Objective Time in
function simulations

Initial (Prior)
Model-reduced approach ~67

Adjoint approach 116 ~26%*2
True log perm field Model-reduced log perm field Adjoint log perm field

Layer: 4 Layer: 5 Layer: 6 Layer: 4 Layer: 5 Layer: 4 Layer: 5
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Conclusions

» Model-reduced variational data assimilation does not require the
implementation of the adjoint of the tangent linear model of the
original reservoir model

» Model-reduced variational data assimilation gives the estimates
comparable to those from data assimilation using an adjoint
method (comparable match and predictions)

» Model-reduced variational data assimilation is easy to implement
and treats simulator as a black-box

» If we have the adjoint code then we do go for the classical
approach
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Questions?
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Suppose we have an ensemble
X ={x,,....x;} x,eR", Knl10O(10%

POD seeks for the best / optimal linear representations of the
members of the set X :

ﬁl""’ﬁK]th:[pl’”"pl]hxl A piERh

L dixk

Xzf(z[

Optimality condition

Solution

The above optimization problem |s solved by eigenvalue analysis of
the correlation matrix R = XX/, thatis

XXTPi = AP,
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An optimal basis is given by

P"=[p.p,.....p, ]

where P; is the eigenvector corresponding to /th largest eigenvalue
A2 2240 ...0 4, >0 of the matrix

The relative importance present in each basis vector

Choose [ such that

where ¢¥ denotes the fraction of the cumulative relative importance
we want to capture
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Consider a general high-order nonlinear discrete reservoir system
x(t)=t (x(tl._l),O) eR”,
y(ti) =h, (X(ti)ae)
The aim of the reduced order modeling is to find the projection P € R™
with P’P=1, and ~00(10°) where [[] h  to obtain the

low-order system
r(z,)=P'f (Pr(z_),0)

y(z,)=h,(Pr(),0)
whose trajectories r(z)=P'x(z) evolvein -dimensional space

High-order Low-order
nonlinear nonlinear
reservoir model reservoir model

u . Optimization

High-order Low-order
linear linear
adjoint model adjoint model




