Convergence properties of the primal and dual forms od the strong and weak constraint variational data assimilation

Amal EL AKKRAOUI¹ and Pierre GAUTHIER^{1,2}

¹Department of Atmospheric and Oceanic Sciences, McGill University, Canada. ²Department of Earth and Atmospheric Sciences, Université du Québec à Montréal (UQAM), Canada.

15 mai 2009

El Akkraoui and Gauthier

McGill University

- 2 Dual behavior
- 3 The minimization algorithms
- Weak-constraint formulation

McGill University

El Akkraoui and Gauthier

Introduction

• **Primal** : 3D and 4D-Var — **Dual** : 3D and 4D-PSAS. PSAS : Physical-space Statistical Analysis System.

 Solving the same variational data assimilation problem in two different spaces : model space (primal) and observation space (dual).

El Akkraoui and Gauthier

McGill University

Introduction

• **Primal** : 3D and 4D-Var — **Dual** : 3D and 4D-PSAS. PSAS : Physical-space Statistical Analysis System.

 Solving the same variational data assimilation problem in two different spaces : model space (primal) and observation space (dual).

El Akkraoui and Gauthier

McGill University

Why the dual formulation?

• It is a smaller space compared to the model space.

 It is expected to be particularly interesting when the size of the control variable of the assimilation problem becomes very large :

- Extended data assimilation window;
- Weak-Constraint formulation.

El Akkraoui and Gauthier

McGill University

Why the dual formulation?

• It is a smaller space compared to the model space.

- It is expected to be particularly interesting when the size of the control variable of the assimilation problem becomes very large :
 - Extended data assimilation window;
 - Weak-Constraint formulation.

El Akkraoui and Gauthier

McGill University

 The objective functions of the primal and dual 3D form are respectively :

$$J(\delta \mathbf{x}) = \frac{1}{2} \delta \mathbf{x}^T \mathbf{B}^{-1} \delta \mathbf{x} + \frac{1}{2} (\mathbf{H} \delta \mathbf{x} - \mathbf{y}')^T \mathbf{R}^{-1} (\mathbf{H} \delta \mathbf{x} - \mathbf{y}')$$
$$F(\mathbf{w}) = \frac{1}{2} \mathbf{w}^T (\mathbf{R} + \mathbf{H} \mathbf{B} \mathbf{H}^T) \mathbf{w} - \mathbf{w}^T \mathbf{y}'$$

- At convergence : $\delta \mathbf{x}_a = \mathbf{B}\mathbf{H}^T \qquad \mathbf{w}_a$ $\uparrow \qquad \uparrow \qquad \uparrow$ dimension n representer matrix dimension m (model space) (observation space)
- 3D-Var and 3D-PSAS are preconditioned with B^{-1/2} and R^{1/2} respectively. (Amodei, 1995)

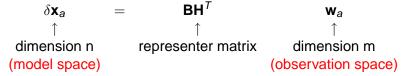
El Akkraoui and Gauthier

McGill University

 The objective functions of the primal and dual 3D form are respectively :

$$J(\delta \mathbf{x}) = \frac{1}{2} \delta \mathbf{x}^T \mathbf{B}^{-1} \delta \mathbf{x} + \frac{1}{2} (\mathbf{H} \delta \mathbf{x} - \mathbf{y}')^T \mathbf{R}^{-1} (\mathbf{H} \delta \mathbf{x} - \mathbf{y}')$$
$$F(\mathbf{w}) = \frac{1}{2} \mathbf{w}^T (\mathbf{R} + \mathbf{H} \mathbf{B} \mathbf{H}^T) \mathbf{w} - \mathbf{w}^T \mathbf{y}'$$

• At convergence :



3D-Var and 3D-PSAS are preconditioned with B^{-1/2} and R^{1/2} respectively. (Amodei, 1995)

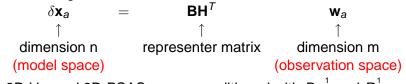
El Akkraoui and Gauthier

McGill University

• The objective functions of the primal and dual 3D form are respectively :

$$J(\delta \mathbf{x}) = \frac{1}{2} \delta \mathbf{x}^T \mathbf{B}^{-1} \delta \mathbf{x} + \frac{1}{2} (\mathbf{H} \delta \mathbf{x} - \mathbf{y}')^T \mathbf{R}^{-1} (\mathbf{H} \delta \mathbf{x} - \mathbf{y}')$$
$$F(\mathbf{w}) = \frac{1}{2} \mathbf{w}^T (\mathbf{R} + \mathbf{H} \mathbf{B} \mathbf{H}^T) \mathbf{w} - \mathbf{w}^T \mathbf{y}'$$

• At convergence :



3D-Var and 3D-PSAS are preconditioned with B^{-1/2} and R^{1/2} respectively. (Amodei, 1995)

El Akkraoui and Gauthier

McGill University

• In a compact form using $\mathbf{L} = \mathbf{R}^{-\frac{1}{2}} \mathbf{H} \mathbf{B}^{\frac{1}{2}}$:

$$\begin{split} J(\mathbf{v}) &= \frac{1}{2} \mathbf{v}^T (\mathbf{I}_n + \mathbf{L}^T \mathbf{L}) \mathbf{v} - \mathbf{v}^T \mathbf{L}^T \tilde{\mathbf{y}} + \frac{1}{2} \tilde{\mathbf{y}}^T \tilde{\mathbf{y}}, \\ F(\mathbf{u}) &= \frac{1}{2} \mathbf{u}^T (\mathbf{I}_m + \mathbf{L} \mathbf{L}^T) \mathbf{u} - \mathbf{u}^T \tilde{\mathbf{y}}, \end{split}$$

- Equivalence only valid at convergence + H is linear.
- The Hessians have the same condition number, and both methods should give the same results and converge at similar convergence rates (*Courtier, 1997*).
- The equivalence is extended to the SV of the Hessians (*El Akkraoui et al., 2008*).

< < >> < <</>

→ Ξ →

El Akkraoui and Gauthier

McGill University

• In a compact form using $\mathbf{L} = \mathbf{R}^{-\frac{1}{2}} \mathbf{H} \mathbf{B}^{\frac{1}{2}}$:

$$J(\mathbf{v}) = \frac{1}{2}\mathbf{v}^{T}(\mathbf{I}_{n} + \mathbf{L}^{T}\mathbf{L})\mathbf{v} - \mathbf{v}^{T}\mathbf{L}^{T}\tilde{\mathbf{y}} + \frac{1}{2}\tilde{\mathbf{y}}^{T}\tilde{\mathbf{y}},$$

$$F(\mathbf{u}) = \frac{1}{2}\mathbf{u}^T(\mathbf{I}_m + \mathbf{L}\mathbf{L}^T)\mathbf{u} - \mathbf{u}^T\tilde{\mathbf{y}},$$

- Equivalence only valid at convergence + H is linear.
- The Hessians have the same condition number, and both methods should give the same results and converge at similar convergence rates (*Courtier, 1997*).
- The equivalence is extended to the SV of the Hessians (*El Akkraoui et al., 2008*).

El Akkraoui and Gauthier

McGill University

• In a compact form using $\mathbf{L} = \mathbf{R}^{-\frac{1}{2}} \mathbf{H} \mathbf{B}^{\frac{1}{2}}$:

$$J(\mathbf{v}) = \frac{1}{2}\mathbf{v}^{\mathsf{T}}(\mathbf{I}_n + \mathbf{L}^{\mathsf{T}}\mathbf{L})\mathbf{v} - \mathbf{v}^{\mathsf{T}}\mathbf{L}^{\mathsf{T}}\tilde{\mathbf{y}} + \frac{1}{2}\tilde{\mathbf{y}}^{\mathsf{T}}\tilde{\mathbf{y}},$$

$$F(\mathbf{u}) = \frac{1}{2}\mathbf{u}^T(\mathbf{I}_m + \mathbf{L}\mathbf{L}^T)\mathbf{u} - \mathbf{u}^T\tilde{\mathbf{y}},$$

- Equivalence only valid at convergence + H is linear.
- The Hessians have the same condition number, and both methods should give the same results and converge at similar convergence rates (*Courtier, 1997*).
- The equivalence is extended to the SV of the Hessians (*El Akkraoui et al., 2008*).

El Akkraoui and Gauthier

McGill University

Image: A Image: A

• In a compact form using $\mathbf{L} = \mathbf{R}^{-\frac{1}{2}}\mathbf{H}\mathbf{B}^{\frac{1}{2}}$:

$$J(\mathbf{v}) = \frac{1}{2}\mathbf{v}^{\mathsf{T}}(\mathbf{I}_n + \mathbf{L}^{\mathsf{T}}\mathbf{L})\mathbf{v} - \mathbf{v}^{\mathsf{T}}\mathbf{L}^{\mathsf{T}}\tilde{\mathbf{y}} + \frac{1}{2}\tilde{\mathbf{y}}^{\mathsf{T}}\tilde{\mathbf{y}},$$

$$F(\mathbf{u}) = \frac{1}{2}\mathbf{u}^T(\mathbf{I}_m + \mathbf{L}\mathbf{L}^T)\mathbf{u} - \mathbf{u}^T\tilde{\mathbf{y}},$$

- Equivalence only valid at convergence + H is linear.
- The Hessians have the same condition number, and both methods should give the same results and converge at similar convergence rates (*Courtier, 1997*).
- The equivalence is extended to the SV of the Hessians (*El Akkraoui et al., 2008*).

El Akkraoui and Gauthier

McGill University

That is the theory...

... The practice is full of surprises.

McGill University

Image: A Image: A

El Akkraoui and Gauthier

That is the theory...

... The practice is full of surprises.

Image: A matrix

El Akkraoui and Gauthier

McGill University

3 > < 3

• **The good news :** At convergence, the dual method gives the same results as the primal one...as expected.

• **The problem :** During the minimization, the dual algorithm exhibits a spurious behavior, source of a serious concern. (From El Akkraoui *et al.*, 2008)

El Akkraoui and Gauthier

McGill University

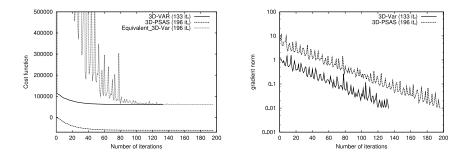
• The good news : At convergence, the dual method gives the same results as the primal one...as expected.

• **The problem :** During the minimization, the dual algorithm exhibits a spurious behavior, source of a serious concern. (From El Akkraoui *et al.*, 2008)

El Akkraoui and Gauthier

McGill University

All roads lead to Rome...but some are stranger than others



At each PSAS iteration k, the iterate \mathbf{u}_k is brought to the model space through the operator \mathbf{L}^T and the 3D-Var

objective function is calculated for $\mathbf{v}_k = \mathbf{L}^T \mathbf{u}_k$. That is, $J(\mathbf{L}^T \mathbf{u}_k)$

El Akkraoui and Gauthier

McGill University

So, in the dual case, we note

- A big increase of the norm of the first gradient.
- The dual assimilation may give an analysis state worst than the background when using a finite number of iterations.
- As long as the problem is not solved, the dual method cannot be used in operational applications, nor is it reliable for a weak-constraint implementation.

El Akkraoui and Gauthier

McGill University

 A closer look at the term of the primal function evaluated at the dual iterates shows that

$$\frac{J}{L^{T}}\mathbf{u}_{k}) = \frac{1}{2} \|\nabla F(\mathbf{u}_{k})\|^{2} - F(\mathbf{u}_{k})$$

- While *F* is being reduced gradually by the minimization algorithm (the CG), no constraint is imposed on its gradient.
- At the first iteration, F(u₁) = 0...The gradient norm may be the dominant term in this formula.
- Need a constraint on the gradient norm....change the minimization algorithm.

El Akkraoui and Gauthier

McGill University

Minres Vs the Conjugate-Gradient

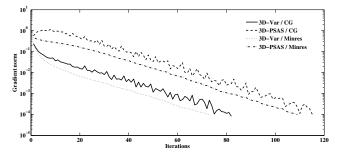
- Iterative methods for solving the linear system : Ax = b.
- Here, A is symmetric and positive definite and corresponds to the Hessians J" and F", and b to the terms L^T ỹ and ỹ respectively.
- The gradients correspond to the residuals : $\mathbf{r} = \mathbf{A}\mathbf{x} \mathbf{b}$.

CG	Minres
symmetric positive definite	symmetric and indefinite
minimize the functional	minimize the residual (gradient)
$\frac{\ \mathbf{r}^{m}_{k}\ ^{2}}{\ \mathbf{r}^{c}_{k}\ ^{2}} = 1 - \frac{\ \mathbf{r}^{m}_{k}\ ^{2}}{\ \mathbf{r}^{m}_{k-1}\ ^{2}}$	

El Akkraoui and Gauthier

McGill University

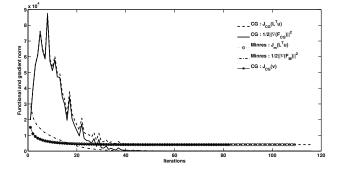
イロン 人間 とくほ とくほう



Minres and the CG residual norms of 3D-Var (solid and dotted lines), and 3D-PSAS (dashed and dash-dotted lines).

El Akkraoui and Gauthier

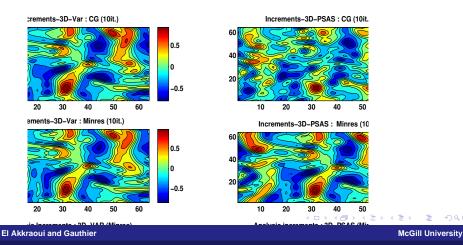
McGill University

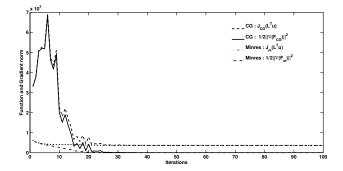


• The primal functional estimated for the dual iterates using the formula $J(\mathbf{L}^T \mathbf{u}_k) = \frac{1}{2} \|\nabla F(\mathbf{u}_k)\|^2 - F(\mathbf{u}_k)$ for the CG (dashed line) and Minres (dotted-line with the circle marker). Also the term $\frac{1}{2} \|\nabla(F)\|^2$ is plotted for the CG (solid line), and Minres (dashed-dotted line), and finally, the original primal function calculated with the CG (solid line with the star marker) is plotted for comparison.

El Akkraoui and Gauthier

McGill University





• Four dimensional case

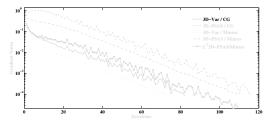
El Akkraoui and Gauthier

McGill University

- 3D/4D-PSAS needs more iterations to converge to the same stopping criterion as the 3D/4D-Var : ^{||r_k||}/_{||r₀||} ≤ ε.
- Recall

 $\mathbf{v}_k \equiv \mathbf{L}^T \mathbf{u}_k$, and, $\mathbf{r}_k^{primal} \equiv \mathbf{L}^T \mathbf{r}_k^{dual}$

• The comparison needs to be in the same space.



Same as before. The star line representing the norm of the dual residuals in the model_space

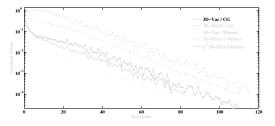
El Akkraoui and Gauthier

McGill University

- 3D/4D-PSAS needs more iterations to converge to the same stopping criterion as the 3D/4D-Var : ||r_k|| ||r₀|| ≤ ε.
- Recall

 $\mathbf{v}_k \equiv \mathbf{L}^T \mathbf{u}_k$, and, $\mathbf{r}_k^{primal} \equiv \mathbf{L}^T \mathbf{r}_k^{dual}$

The comparison needs to be in the same space.



Same as before. The star line representing the norm of the dual residuals in the model_space

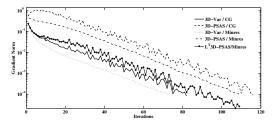
El Akkraoui and Gauthier

McGill University

- 3D/4D-PSAS needs more iterations to converge to the same stopping criterion as the 3D/4D-Var : ||r_k||/|r₀|| ≤ ε.
- Recall

$$\mathbf{v}_k \equiv \mathbf{L}^T \mathbf{u}_k, \quad \text{and}, \quad \mathbf{r}_k^{primal} \equiv \mathbf{L}^T \mathbf{r}_k^{dual}$$

The comparison needs to be in the same space.



Same as before. The star line representing the norm of the dual residuals in the model space.

El Akkraoui and Gauthier

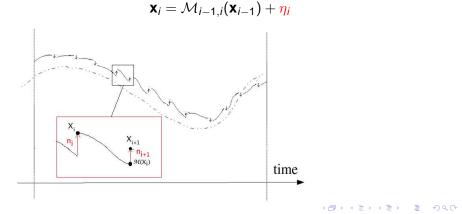
McGill University

- R_1 : stop the primal minimization when $\frac{\|\mathbf{r}_k\|}{\|\mathbf{r}_0\|} \leq \epsilon$.
- R_2 : stop the dual minimization when $\frac{\|\mathbf{L}^T \mathbf{r}_k\|}{\|\mathbf{L}^T \mathbf{r}_0\|} \leq \epsilon$.

El Akkraoui and Gauthier

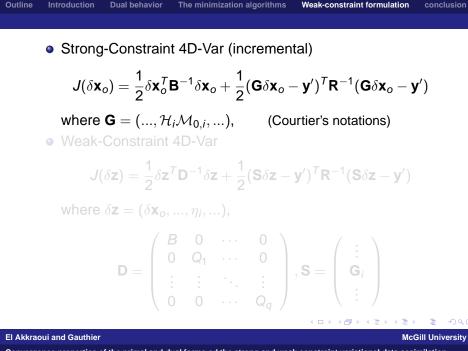
McGill University

Weak-constraint formulation : Accounting for model errors in DA



El Akkraoui and Gauthier

McGill University



Strong-Constraint 4D-Var (incremental)

$$J(\delta \mathbf{x}_o) = \frac{1}{2} \delta \mathbf{x}_o^T \mathbf{B}^{-1} \delta \mathbf{x}_o + \frac{1}{2} (\mathbf{G} \delta \mathbf{x}_o - \mathbf{y}')^T \mathbf{R}^{-1} (\mathbf{G} \delta \mathbf{x}_o - \mathbf{y}')$$

where $\mathbf{G} = (..., \mathcal{H}_i \mathcal{M}_{0,i}, ...)$, (Courtier's notations)

Weak-Constraint 4D-Var

$$J(\delta \mathbf{z}) = \frac{1}{2} \delta \mathbf{z}^T \mathbf{D}^{-1} \delta \mathbf{z} + \frac{1}{2} (\mathbf{S} \delta \mathbf{z} - \mathbf{y}')^T \mathbf{R}^{-1} (\mathbf{S} \delta \mathbf{z} - \mathbf{y}')$$

where $\delta \mathbf{z} = (\delta \mathbf{x}_0, ..., \eta_i, ...)$,

$$\mathbf{D} = \begin{pmatrix} B & 0 & \cdots & 0 \\ 0 & Q_1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & Q_q \end{pmatrix}, \mathbf{S} = \begin{pmatrix} \vdots \\ \mathbf{G}_i \\ \vdots \end{pmatrix}$$

El Akkraoui and Gauthier

McGill University

$$F(\mathbf{w}) = \frac{1}{2}\mathbf{w}^T(\mathbf{R} + \mathbf{G}\mathbf{B}\mathbf{G}^T)\mathbf{w} - \mathbf{w}^T\mathbf{y}^T$$

Weak-Constraint 4D-PSAS

$$F(\mathbf{w}) = rac{1}{2}\mathbf{w}^T (\mathbf{R} + \mathbf{S}\mathbf{D}\mathbf{S}^T)\mathbf{w} - \mathbf{w}^T\mathbf{y}^T$$

- The control variable is still defined in the observation space (does not change).
- Preconditioning $(\mathbf{u} = \mathbf{R}^{\frac{1}{2}}\mathbf{w})$

$$F(\mathbf{u}) = \frac{1}{2}\mathbf{u}^{T}(\mathbf{I}_{m} + \mathbf{R}^{-\frac{1}{2}}\mathbf{S}\mathbf{D}\mathbf{S}^{T}\mathbf{R}^{-\frac{1}{2}})\mathbf{u} - \mathbf{u}^{T}\mathbf{R}^{-\frac{1}{2}}\mathbf{y}'$$

El Akkraoui and Gauthier

McGill University

$$F(\mathbf{w}) = rac{1}{2}\mathbf{w}^T(\mathbf{R} + \mathbf{G}\mathbf{B}\mathbf{G}^T)\mathbf{w} - \mathbf{w}^T\mathbf{y}^T$$

Weak-Constraint 4D-PSAS

$$F(\mathbf{w}) = \frac{1}{2}\mathbf{w}^{T}(\mathbf{R} + \mathbf{SDS}^{T})\mathbf{w} - \mathbf{w}^{T}\mathbf{y}^{\prime}$$

- The control variable is still defined in the observation space (does not change).
- Preconditioning $(\mathbf{u} = \mathbf{R}^{\frac{1}{2}}\mathbf{w})$

$$F(\mathbf{u}) = \frac{1}{2}\mathbf{u}^{\mathsf{T}}(\mathbf{I}_m + \mathbf{R}^{-\frac{1}{2}}\mathbf{S}\mathbf{D}\mathbf{S}^{\mathsf{T}}\mathbf{R}^{-\frac{1}{2}})\mathbf{u} - \mathbf{u}^{\mathsf{T}}\mathbf{R}^{-\frac{1}{2}}\mathbf{y}'$$

El Akkraoui and Gauthier

McGill University

$$F(\mathbf{w}) = rac{1}{2}\mathbf{w}^T(\mathbf{R} + \mathbf{G}\mathbf{B}\mathbf{G}^T)\mathbf{w} - \mathbf{w}^T\mathbf{y}^T$$

Weak-Constraint 4D-PSAS

$$\mathcal{F}(\mathbf{w}) = rac{1}{2}\mathbf{w}^T(\mathbf{R} + \mathbf{S}\mathbf{D}\mathbf{S}^T)\mathbf{w} - \mathbf{w}^T\mathbf{y}^T$$

 The control variable is still defined in the observation space (does not change).

• Preconditioning $(\mathbf{u} = \mathbf{R}^{\frac{1}{2}}\mathbf{w})$

$$F(\mathbf{u}) = \frac{1}{2}\mathbf{u}^{\mathsf{T}}(\mathbf{I}_m + \mathbf{R}^{-\frac{1}{2}}\mathbf{S}\mathbf{D}\mathbf{S}^{\mathsf{T}}\mathbf{R}^{-\frac{1}{2}})\mathbf{u} - \mathbf{u}^{\mathsf{T}}\mathbf{R}^{-\frac{1}{2}}\mathbf{y}'$$

El Akkraoui and Gauthier

McGill University

$$F(\mathbf{w}) = rac{1}{2}\mathbf{w}^T(\mathbf{R} + \mathbf{G}\mathbf{B}\mathbf{G}^T)\mathbf{w} - \mathbf{w}^T\mathbf{y}^T$$

Weak-Constraint 4D-PSAS

$$F(\mathbf{w}) = \frac{1}{2}\mathbf{w}^{T}(\mathbf{R} + \mathbf{SDS}^{T})\mathbf{w} - \mathbf{w}^{T}\mathbf{y}^{\prime}$$

- The control variable is still defined in the observation space (does not change).
- Preconditioning ($\mathbf{u} = \mathbf{R}^{\frac{1}{2}}\mathbf{w}$)

$$F(\boldsymbol{u}) = \frac{1}{2}\boldsymbol{u}^{T}(\boldsymbol{I}_{m} + \boldsymbol{R}^{-\frac{1}{2}}\boldsymbol{S}\boldsymbol{D}\boldsymbol{S}^{T}\boldsymbol{R}^{-\frac{1}{2}})\boldsymbol{u} - \boldsymbol{u}^{T}\boldsymbol{R}^{-\frac{1}{2}}\boldsymbol{y}'$$

El Akkraoui and Gauthier

McGill University

The adjoint variables

The primal case

$$\nabla_{\delta \mathbf{z}} J = \mathbf{D}^{-1} \delta \mathbf{z} + \mathbf{S}^{T} \mathbf{R}^{-1} (\mathbf{S} \delta \mathbf{z} - \mathbf{y}')$$

the adjoint variable is $\delta \mathbf{x}^*_i = \mathbf{M}_{i+1}^T \delta \mathbf{x}^*_{i+1} - \mathbf{H}_i^T \mathbf{R}_i^{-1} \mathbf{y}'_i$, with $\mathbf{H}_n^T \mathbf{R}_n^{-1} \mathbf{y}'_n$. (Trémolet, 2007)

The dual case

$$abla_{\mathbf{w}} F = (\mathbf{R} + \mathbf{S} \mathbf{D} \mathbf{S}^T) \mathbf{w} - \mathbf{y}'$$

the adjoint variable is $\mathbf{w}_i^* = \mathbf{M}_{i+1}^T \mathbf{w}_{i+1}^* + \mathbf{H}_i^T \mathbf{w}_i$, with $\mathbf{w}_n^* = \mathbf{H}_n^T \mathbf{w}_n$

• The gradient can still be calculated with one backward integration + one forward integration.

El Akkraoui and Gauthier

McGill University

< ロ > < 同 > < 回 > < 回 >

The adjoint variables

The primal case

$$\nabla_{\delta \mathbf{z}} J = \mathbf{D}^{-1} \delta \mathbf{z} + \mathbf{S}^{\mathsf{T}} \mathbf{R}^{-1} (\mathbf{S} \delta \mathbf{z} - \mathbf{y}')$$

the adjoint variable is $\delta \mathbf{x}^*_i = \mathbf{M}_{i+1}^T \delta \mathbf{x}^*_{i+1} - \mathbf{H}_i^T \mathbf{R}_i^{-1} \mathbf{y}'_i$, with $\mathbf{H}_n^T \mathbf{R}_n^{-1} \mathbf{y}'_n$. (Trémolet, 2007)

The dual case

$$abla_{\mathbf{w}} \mathbf{F} = (\mathbf{R} + \mathbf{S} \mathbf{D} \mathbf{S}^T) \mathbf{w} - \mathbf{y}'$$

the adjoint variable is $\mathbf{w}_i^* = \mathbf{M}_{i+1}^T \mathbf{w}_{i+1}^* + \mathbf{H}_i^T \mathbf{w}_i$, with $\mathbf{w}_n^* = \mathbf{H}_n^T \mathbf{w}_n$

• The gradient can still be calculated with one backward integration + one forward integration.

El Akkraoui and Gauthier

McGill University

The adjoint variables

The primal case

$$\nabla_{\delta \mathbf{z}} J = \mathbf{D}^{-1} \delta \mathbf{z} + \mathbf{S}^{\mathsf{T}} \mathbf{R}^{-1} (\mathbf{S} \delta \mathbf{z} - \mathbf{y}')$$

the adjoint variable is $\delta \mathbf{x}^*_i = \mathbf{M}_{i+1}^T \delta \mathbf{x}^*_{i+1} - \mathbf{H}_i^T \mathbf{R}_i^{-1} \mathbf{y}'_i$, with $\mathbf{H}_n^T \mathbf{R}_n^{-1} \mathbf{y}'_n$. (Trémolet, 2007)

The dual case

$$abla_{\mathbf{w}} \mathbf{F} = (\mathbf{R} + \mathbf{S} \mathbf{D} \mathbf{S}^T) \mathbf{w} - \mathbf{y}'$$

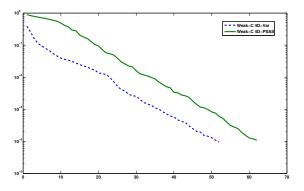
the adjoint variable is $\mathbf{w}_i^* = \mathbf{M}_{i+1}^T \mathbf{w}_{i+1}^* + \mathbf{H}_i^T \mathbf{w}_i$, with $\mathbf{w}_n^* = \mathbf{H}_n^T \mathbf{w}_n$

• The gradient can still be calculated with one backward integration + one forward integration.

El Akkraoui and Gauthier

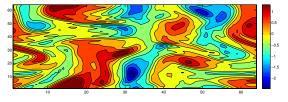
McGill University

- Experiments : 2D-turbulent model solving for the barotropic vorticity on the β -plane.
- The model error : $\beta_{control} = 0.4$, and $\beta = 0.5$.
- Model error covariance matrices : $\mathbf{Q}_i = \alpha \mathbf{B}$.

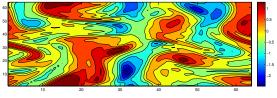


El Akkraoui and Gauthier

McGill University



Analysis Increments (Strong-Constraint 4D-Var)



Analysis Increments (Weak-Constraint 4D-Var)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - つへで

McGill University

El Akkraoui and Gauthier

Questions currently examined (or about to be) in this context :

- The fit to the observations in the assimilation window and the total error in a weak-constraint assimilation compared to the S-C case...The impact of J_Q . (longer assimilation windows)
- Need to make sure the TLM validity holds.
- Q = αB is not the way to go. (the analysis increments are at best as "good" as the SC increments).

El Akkraoui and Gauthier

McGill University

- The dual formulation of the variational data assimilation is a intresting scheme :
 - \hookrightarrow Equivalence of the results at convergence for the primal and dual cases (3D and 4D).
 - \hookrightarrow Both methods have similar convergence rates (Courtier, 1997), and the SV of their Hessians are equivalent (useful in preconditioning and cycling process).
 - \hookrightarrow With appropriate termination criterion, both methods converge with similar number of iterations.

- The biggest concern for the dual method has been fully explained.
- Using Minres as a minimization algorithm insead of the CG solves this problem.
- 3D/4D-PSAS can be used with confidence in operational implementations and in a weak-constraint framework.
- The implementation of a weak-constraint scheme (primal and dual) was made "relatively" easier with the modularity of the operators.
- The work on the model errors is still ongoing.

El Akkraoui and Gauthier

McGill University

- The biggest concern for the dual method has been fully explained.
- Using Minres as a minimization algorithm insead of the CG solves this problem.
- 3D/4D-PSAS can be used with confidence in operational implementations and in a weak-constraint framework.
- The implementation of a weak-constraint scheme (primal and dual) was made "relatively" easier with the modularity of the operators.
- The work on the model errors is still ongoing.

El Akkraoui and Gauthier

McGill University

< < >> < <</>

~ 프 > ~ 프

- The biggest concern for the dual method has been fully explained.
- Using Minres as a minimization algorithm insead of the CG solves this problem.
- 3D/4D-PSAS can be used with confidence in operational implementations and in a weak-constraint framework.
- The implementation of a weak-constraint scheme (primal and dual) was made "relatively" easier with the modularity of the operators.
- The work on the model errors is still ongoing.

El Akkraoui and Gauthier

McGill University

< < >> < <</>

~ 프 > ~ 프

- The biggest concern for the dual method has been fully explained.
- Using Minres as a minimization algorithm insead of the CG solves this problem.
- 3D/4D-PSAS can be used with confidence in operational implementations and in a weak-constraint framework.
- The implementation of a weak-constraint scheme (primal and dual) was made "relatively" easier with the modularity of the operators.
- The work on the model errors is still ongoing.

El Akkraoui and Gauthier

McGill University

★ Ξ →

- The biggest concern for the dual method has been fully explained.
- Using Minres as a minimization algorithm insead of the CG solves this problem.
- 3D/4D-PSAS can be used with confidence in operational implementations and in a weak-constraint framework.
- The implementation of a weak-constraint scheme (primal and dual) was made "relatively" easier with the modularity of the operators.
- The work on the model errors is still ongoing.

Thank you

El Akkraoui and Gauthier

McGill University