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Personal Background

Work on adjoints since 1990

Chief organizer of 7 of the 8 Adjoint Workshops

25 journal articles on adjoint development or applications

Performed adjoint-related work on:
Adjoint development validation and efficiency
Development of useful adjoints of models with physics
Work on synoptic sensitivity analysis

Examination of singular vectors (SVs)
Work on predictability

Also work on

Dynamic balance (21 papers and 5 technical notes)
Predictability (8 papers)
Data assimilation (7 papers)
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Sensitivity Analysis:
The basis for adjoint model applications

Adjoints in simple terms



Adjoint Sensitivity Analysis for a Discrete Model
The Problem to Consider:

A possibly nonlinear model:
y = m(x)
A differentiable scalar measure of model output fields:
J=J(y)
The result of input perturbations
AJ =J(x+x')— J(x)

A 1st—order Taylor series approximation to A.J

The goal is to efficiently determine 5= for all ¢



Adjoint Sensitivity Analysis for a Discrete Model
The Tangent Linear Model (TLM)

Apply a Ist—order Taylor series to approximate the model output

8y?, -
Y; = Z o, (5)

Jy;/Ox; is called the Resolvant matrix of the TLM or, less ac-
curately, the Jacobian of the nonlinear model.

Approximate A.J by a lst—order Taylor series about y’

=3 2Ly (6)




Adjoint Sensitivity Analysis for a Discrete Model
Example of a TLM

Nonlinear discrete model (NLM):

ult, . —ut
ul = ul — (At)u? 1+21(A3’:)1_1 (7)

TLM linearized about the possibly 4-D varying state u:

At - . N
i = U; — AT [’“’g‘,n (H?Jrl — ;) + Uy (“;‘il - ”;‘21)] (8)

i

Perturbations

f_n—l—l m

U




Adjoint Sensitivity Analysis for a Discrete Model
The Adjoint Model

(Adjoint of the TLM or adjoint of the nonlinear model)

Application of the “chain rule” yields

8yj 0J

3:@“1

Contrast with the TLM
3‘}@

A. The variables are different in the two equations
B. The order of applications of the variables related to x and y differ

C. The indices 7 and j in the matrix operator are reversed



Adjoint Sensitivity Analysis
Impacts vs. Sensitivities

A single impact study yields exact response measures
(J) for all forecast aspects with respect to the particular
perturbation investigated.

A single adjoint-derived sensitivity yields linearized
estimates of the particular measure (J) investigated
with respect to all possible perturbations.
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Adjoint Sensitivity Analysis for a Discrete Model
Additional Notes

. Mathematically, the field 0.J/0x is said to reside in the dual space

of x

. With the change of notation x = 0.J/0x, M = dy/0x, etc.,

T =3Ty =97 (Mx) = ("M)x = (M7§)" x=%"x (11)

. The exact definition of the the adjoint depends on the quadratic

expression used to define J’. If the simple Euclidean norm (or dot
product) is used, then for a discrete model, the adjoint is simply
a transpose. Such a simple norm may not be appropriate when
the dual space fields are to be physical interpretated. (More on
this later.)

. The adjoint is not generally the inverse: in non-trivial atmo-

spheric models, M? # M~!,

. This is all 1st—year calculus and linear algebra. If examination of

gradients is useful, then so are the adjoint models used to calculate
them.
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Adjoint Sensitivity Analysis for a Discrete Model
Additional Notes

. Mathematically, the field 0.J/0x is said to reside in the dual space

of x

. With the change of notation x = 9.J/0x, M = 0y /0x, etc.,

J =yly' =y (Mx') = (f/TM) x = (MTS}) x =x'x" (11)

. The exact definition of the the adjoint depends on the quadratic

expression used to define J’. If the simple Euclidean norm (or dot
product) is used, then for a discrete model, the adjoint is simply
a transpose. Such a simple norm may not be appropriate when
the dual space fields are to be physical interpreted. (More on this
later.)

. The adjoint is not generally the inverse: in non—trivial atmo-

spheric models, M? # M~1,

. This is all 1st—year calculus and linear algebra. If examination of

gradients is useful, then so are the adjoint models used to calculate
them.



Adjoint Sensitivity Analysis for a Discrete Model
Example Model Equations

Nonlinear model:

n

ntl _ on Uiy — U
ui _ (At) Q(A:I‘) (7)
TLM
At
u::”H = u" SAG [ugn(ﬁal — U 4)+ u”(ulH — Lfil)] (8)

Adjoint model:

) ) (At) ., . 3 ) oy
ar =altt — TN (@, —a)ar ™ +al ot — uﬁluifl]

(12)




Adjoint Sensitivity Analysis for a Discrete Model
Example J

Consider J for northward moisture flux through a “window”
J for continuous fields

J=/Q’U dm (13)

J for discretized model

J = E Wi ik Gi5.k Vijk (14)
0J 5
= Wik ik (15)
Qi j k
oJ .
= Wik ik (16)
3Q¢,j,k
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Although the previous description of an adjoint for a
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Examples of Adjoint-Derived Sensitivities



Example Sensitivity Field
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J=average surface pressure in
a small box centered at P

al,/du for t= -3. ¢=0.35

J=Dbarotropic component of
vorticity at point P

dl3/6u  for t= —3. ¢=0.35
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FIG. 11. The same as Fig. 9, except for sensitivity of J;.
The coniour interval is 0.006 mbsm™.

From Errico and VVukicevic 1992

F1G. 13. The same as Fig. 9, excepi for sensitivity of Js.
The contour interval is 0.003 s m™'.




ps with respect to T for an idealized cyclone

Sensitivity field for J
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Development of Adjoint Model From
Line by Line Analysis of Computer Code



Why consider development from code?

Eventually, an adjoint code will be necessary.
The code itself is the most accurate description of the model algorithm.

If the model algorithm creates different dynamics than the original equations
being modeled, for most applications it is the former that are desirable and

only the former that can be validated.



Development of Adjoint Model From
Line by Line Analysis of Computer Code

Let A, B, C, D be different operators making up M (e.g., advec-
tion, dry physics, moist physics, etc.)

Let subscripts denote time steps.

Then, the TLM and Adjoint are decribed by sequences of linear
operators

TLM:
y' =D,C,B,A,...DiC:B1A1DyCyBpAyx’
Adjoint

x=A{BC!DJ{AIBIC/D!...A'B/C!D'y



Development of Adjoint Model From
Line by Line Analysis of Computer Code

Y = X * (W**A)

Parent NLM
Z=Y*X

CYtIm = XM * (WA + WHM *A* X *(W**(A-1))
TLM Zm = Ytim * X + Xtim * Y

Xad) = Xadj + Zadj * Y
Yadj = Yadj + Zad] * X
Adjoint :
Xadj = Xadj + Yadj* (W**A)
Wadj = Wadj + Yadj * X *(W**(A-1))



Development of Adjoint Model From
Line by Line Analysis of Computer Code

Y = X * (W**A)

Parent NLM
Z=Y*X

CYtIm = XM * (WA + WHM *A* X *(W**(A-1))
TLM Zm = Ytim * X + Xtim * Y

Adjoint :
Xadj = Xadj + Yadj* (W**A)
Wadj = Wadj + Yadj * X *(W**(A-1))



Development of Adjoint Model From
Line by Line Analysis of Computer Code

Automatic Differentiation

TAMC Ralf Giering (superceded by TAF)
TAF FastOpt.com

ADIFOR Rice University

TAPENADE INRIA, Nice

OPENAD Argonne

Others www.autodiff.org



Development of Adjoint Model From
Line by Line Analysis of Computer Code

1. TLM and Adjoint models are straight-forward to derive from
NLM code, and actually simpler to develop.

2. Intelligent approximations can be made to improve efficiency.

3.  TLM and (especially) Adjoint codes are simple to test
rigorously.

4. Some outstanding errors and problems in the NLM are typically
revealed when the TLM and Adjoint are developed from it.

5. Itis best to start from clean NLM code.

6. The TLM and Adjoint can be formally correct but useless!



Nonlinear Validation

Does the TLM or Adjoint model tell us anything about
the behavior of meaningful perturbations in the nonlinear
model that may be of interest?



Linear vs. Nonlinear Results in Moist Model

24-hour SV1 from case W1
Initialized with T’=1K
Final ps field shown Errico and Raeder
1999 QJRMS

e S N =
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Contour Interval 0.5 hPa



Linear vs. Nonlinear Results in Moist Model
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Linear vs. Nonlinear Results

In general, agreement between TLM and NLM results
will depend on:

Amplitude of perturbations

Stability properties of the reference state
Structure of perturbations

Physics involved

Time period over which perturbation evolves
Measure of agreement

o 01k whE

The agreement of the TLM and NLM is exactly
that of the Adjoint and NLM if the Adjoint is exact
with respect to the TLM.
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Efficient solution of optimization problems



Optimal Perturbations

Type 1
/ J. I aJ /
Maximize J =, 5o T
Given the constraint: C = % Zi W; ;r;z

Solution Method: Minimize the augmented variable

I = Z&ri mg—l—)\(C—Zmim?)

i

ol oJ g !
— — \w;
Solution: \ 87
/{ tn' (l = -
x; (optimal) o

—1

1 /0J\"
“42@(8%)]

1

(30)
(31)

(32)

(33)

(34)

(35)



Optimal Perturbations

Type I

Minimize O = %Z@, w; 31;2
(Given the constraint: J =Y, gxi !
Solution Method (as before)
Solution:

/(optimal) A 0J

. (optimal) = —
i\OP w; 04

—1

A=J

Zl aJ\”
— w; \ Ox;

7

(36)
(37)

(38)

(39)



The more general nonlinear optimization problem

Find the local minima of a scalar nonlinear function J(x).

0J/0x

Grad_ient Contours of J
at point P In phase (x) space

P

At



Optimal Perturbations
Sample Norms

1. The Energy Norm

_ 1
24

S

sT

E

|:uf2 4+ wrz 4+

2. A Variance Weighted Norm

12 /2 12 12
v 1 [ u v T 2k

il l= = p?] dA do (47)

3. A norm weighted by the inverse of the analysis error covariance
matrix )

C=sx"ATX (48)

Assuming Gaussian error statistics, exp (—C') o« PDF(x')



Singular Vectors



Optimal Perturbations
Singular Vectors

Maximize the L2 norm: N = 3y"Ny’ (40)
Given the TLM: y' = Mx/ (41)
And the constraint: 1 = C =3x"TCx (42)

Solution Method: Minimize the augmented variable I(x’):

1 ‘ 1
I = Ex"TMTNMx" + \? (C — EX’TCX’) (43)
I &
g - = M"NMx' — \>Cx’ (44)
X

1 . . .
For z = C2x/, the solution is an eigenvalue problem

A2z = C :MTNMC 2z (45)
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Optimal Perturbations
Additional Notes Regarding SVs

. A are the singular values of the matrix NzMC- 2.

. The set of x’ form an orthonormal basis with respect to the norm

C.

. If C and N are the Euclidean norm I, then x" = z are the right

(or initial) singular vectors (or SVs) of M and y’ = Mx' are
the left (or final or evolved) singular vectors of M. The same
terminology is used even for more general norms.

. A2 = N/C for each solution.

. If C is the inverse of the error covariance matrix, then the evolved

SVs are the EOF's (or PCs) of the forecast error covariance, and
truncations using the leading SVs maximize the retained error

variance. (Ehrendorfer and Tribbia 1997 JAS)

. The SVs and A\? depend on the norms used; i.e., on how measure-

ments are made. This dependency is removed only by introducing
some other constraint or condition.

. 9Vs produced for semi—infinite periods are equivalent to Lyupanov

vectors (Legras and Vautard, 1995 ECMWF Note).
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NON-LOCAL INITIAL STRUCTURES

Jan-15-2006 ISVEC#1  Jan-20-2006 ,wnd at 10 mb
Vertically Integrated TE

From Novakovskaia et al. 2007 and Errico et al. 2007



The Balance of Singular Vectors
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Singular
Value
Squared

Errico et al.
Tellus 2001
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Other Applications
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Other Applications

ADVAR (Tutorial following)

Ensemble Forecasting (R. Buizza, T. Palmer)
Key analysis errors (F. Rabier, L. Isaksen)
Targeting (R. Langland, R. Gelaro)
Observation impact estimates (R. Langland,
R. Gelaro)



Problems with Physics



Problems with Physics

Consider Parameterization of Stratiform Precipitation

NLM

Modified
NLM




Example of a potentially worse problem introduced by smoothing

df

f(x)
I




Example of a failed adjoint model development

Sensitivity of forecast J with respect to earlier T in lowest model model level

Time= -3 hours;  contour int.=0.00025  Time=-9 hours;  contour int.=10000.

Chsrs r— QHH?
- . 0 | . 3
B Hooo i

From R. Errico, unpublished MAMS2 development



Tangent linear vs. nonlinear model solutions
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VERTICAL LEVEL
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Problems with Physics
Parameterization of Vertical Eddy Diffusion

NLM:
ou 10 ou

Y Pl

The K are flow—dependent eddy diffusion coefficients.

TLM:

ou’ 190 _~0u 10 O
.+ =——0nK —— K — t s f !
i ﬁ(‘?zp 0z + ﬁ@zp 0z - terms for p

ot

Usually a semi—-implicit treatment of Ou/0z is used to greatly

increase numerical stability. This appear to work in the NLM but
is insufficient in the TLM.

Instead, the K’ term is generally ignored!



3.

4.

D.

Problems with Physics

The model may be non-differentiable.
Unrealistic discontinuities should be smoothed after
reconsideration of the physics being parameterized.
Perhaps worse than discontinuities are numerical insta-
bilities that can be created from physics linearization.
It is possible to test the suitability of physics components
for adjoint development before constructing the adjoint.
Development of an adjoint provides a fresh and
complementary look at parameterization schemes.



Other Important Considerations

Physically-based norms and the interpretations of
sensitivity fields



o (error “energy”) / 0 (Tv 24-hours earlier)
1 x 1.25 degree lat-lon 0.5 x 0.0625 degree lat-lon

O i T |

10w BW  GW 4w Ew O il g H 100 BW aW  4W

From R. Todllng



Sensitivities of continuous fields

Consider J(f(x)) where J is a scalar function of a set f; of continuous fields
represented by the vector f, each defined within a multi—dimensional space x.
Then, the real functional expression

oJ

, 6F)

should be interpreted as

> [ astx) 5% () 65

where S is a volume, mass, or other metric. With this interpretation, 9.J/0 f;
has physical units of J x fi_l x S71: i.e., it is a kind of sensitivity density.

This field of sensitivity density is relatively independent of the grid on which
it is represented, but to estimate the change of J due to a perturbation of
applied at grid point X, the grid volume dS' at this point must be considered;
ie.,

aJ
57 (%6) = ] _ 15(x) 3 - 2 %)

It is safer to base physical interpretations of sensitivity on its density, but
then sensitivities to grid point perturbations become less obvious.



Sensitivity of J with respect to u 5 days earlier at 45°N,
where J is the zonal mean of zonal wind within a narrow
band centered on 10 hPa and 60°N. (From E. Novakovskaia)

100 hPa

1000 hPa

- 180 0 Longitude




vertical level index

11

21

31

41

51

61

71

Rescaling options for a vertical grid

fractional weight

Delta log p 1 hPa
10 hPa
100 hPa
T j 500 hPa
| Delta p
850 hPa
0 0.01 0.02 0.03 0.04 0.05 0.06



2 Re-scalings of the adjoint results

Mass weighting Volume weighting

0.1
hPa

10
hPa

1000
hPa

From E. Novakovskaia



Summary



Misunderstanding #1

False: Adjoint models are difficult to understand.

True: Understanding of adjoints of numerical models
primarily requires concepts taught in early
college mathematics.



Misunderstanding #2

False: Adjoint models are difficult to develop.

True: Adjoint models of dynamical cores are simpler
to develop than their parent models, and almost
trivial to check, but adjoints of model physics
can pose difficult problems.



Misunderstanding #3

False: Automatic adjoint generators easily generate
perfect and useful adjoint models.

True: Problems can be encountered with automatically
generated adjoint codes that are inherent in the
parent model. Do these problems also have a
bad effect In the parent model?



Misunderstanding #4

False: An adjoint model is demonstrated useful and
correct If it reproduces nonlinear results for
ranges of very small perturbations.

True: To be truly useful, adjoint results must yield
good approximations to sensitivities with
respect to meaningfully large perturbations.
This must be part of the validation process.



Misunderstanding #5

False: Adjoints are not needed because the EnKF Is
better than 4DVAR and adjoint results disagree
with our notions of atmospheric behavior.

True: Adjoint models are more useful than just for
ADVAR. Their results are sometimes profound,
but usually confirmable, thereby requiring new
theories of atmospheric behavior. It is rare that we
have a tool that can answer such important questions
so directly!



What Is happening and where are we headed?

1. There are several adjoint models now, with varying
portions of physics and validation.

2. Utilization and development of adjoint models has been
slow to expand, for a variety of reasons.

3. Adjoint models are powerful tools that are under-utilized.

4. Adjoint models are like gold veins waiting to be mined.



Recommendations

1. Develop adjoint models.

2. Include more physics in adjoint models.

3. Develop parameterization schemes suitable
for linearized applications.

4. Always validate adjoint results (linearity).

4. Consider applications wherever sensitivities
would be useful.
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