Initial perturbations for ensemble forecasting – singular vectors vs. breeding vectors

Linus Magnusson Stockholm University

Acknowledgements: Erland Källén; Jonas Nycander; Martin Leutbecher; SMHI

Desirable properties of initial perturbations

- Sampling analysis uncertainty
 - Mean amplitude
 - Geographical distribution
 - Spatial scale
 - "Error of the day"
- Sustainable growth
- High quality of probabilistic forecast

Singular vectors

$$\alpha = \frac{\left\langle \Delta \vec{x}(t), \Delta \vec{x}(t) \right\rangle}{\left\langle \Delta \vec{x}(0), \Delta \vec{x}(0) \right\rangle}$$

Optimize perturbation growth for a time interval

Norm dependent!

M tangent linear operator. $\Delta \mathbf{x}(t) = \mathbf{M}(t, x_0) \Delta \mathbf{x}(0)$

Singular vector perturbation

Breeding perturbations

Perturbed Forecast +06h

Unperturbed Forecast +06h

x normalizing factor =

Random Perturbations

Analysis error estimate

temperature

u-wind

Random number (-1 to 1) x

v-wind

160"W 140"W 120"W 100"W 80"W 60"W 40"W 20"W 0" 20"E 40"E 60"E 80"E 100"E 120"E 140"E 160"E

x global tuning factor

Random Field (RF) perturbation

Analysis Random date 1

Analysis Random date 2

Random Field Perturbation

x normalizing factor =

Exponential perturbation growth

$$\lambda = \frac{1}{\Delta t} \ln \left(\frac{||\Delta x(t + \Delta t)||}{||\Delta x(t)||} \right)$$

SV – red, BV – blue, Random Field Pert. – Green, Random Pert. - black

Evolution of ensemble spread (one case, total pert. energy 700 hPa)

Initially

Breeding perturbations

Singular Vector perturbations

Evolution of ensemble spread (one case, total pert. energy 700 hPa)

+48h

Breeding perturbations

Singular Vector perturbations

Connections between perturbations and baroclinic zones

 $E = 0.3125 \frac{f}{N} \frac{dV}{dz}$ Fastest growth rate of normal modes

(d) Singular Vector perturbations

Correlation Eady index – Ens. Stdev z500

SV - Red ET - Blue RF – Green RP - Black

(20N-70N)

0.2 10² 0.1 10² 8. 7. 6. 5. 4. З. Amplitude 2. 1. 0.8 0.7 0.6 0.5 0.4 0.3-0.2-Legendre polynomial order n 5 6 7 8 9 10 40 50 60 70 80 100 200 2 3 4

SV - Red ET - Blue RF – Green **RP** - Black

Perturbation amplitude spectra T700 +00

0.2 10² +48h 0.1 10² 8. 7. 6. 5. 4. З. Amplitude 2. 7 1.-0.8 0.7 0.6 0.5 +00h 0.4 0.3-0.2-Legendre polynomial order n 200 5 6 7 8 9 10 40 50 60 70 80 100 2 3 4

Perturbation amplitude spectra T700 +48

SV - Red ET - Blue RF – Green RP - Black

Zonal mean perturbation energy (sqrt) Initially

Random Field perturbations Step 00

Singular Vectors Step 00

Zonal mean perturbation energy (sqrt) +48h

Random Field Perturbations Step 48

Singular Vectors Step 48

Ensemble quality

- Initial + evolved singular vectors
- Ensemble transform perturbations (regionally rescaled)
- 90 forecast cases
- 20 ensemble members
- ECMWF IFS-model T_L255L40

RMSE of Ensemble mean and Ensemble spread z500

N.Hem

SV – Red ET – Blue RF - Green

Ranked Probability skill score t850

Different initial perturbations

Different Centres (from Park et al.(2008), Courtesy R. Buizza)

Summary

Singular Vectors

- Fast transient perturbation growth
- Strong connection to baroclinic zones
- Tropics?

Breeding Vectors

- Growth as Lyapunov exponent
- Mature structures
- Tropics?

Similar properties after the transient period

Discussion

- Are the singular vectors too explosive?
- Are the breeding vectors too mature?
- Does it matter?

Perturbation Energy ratio

SV - Red ET - Blue RF – Green RP - Black