Chemical Data Assimilation

Adrian Sandu Virginia Tech

Information feedback loops between CTMs and observations: data assimilation and targeted meas.

AR model of background errors accounts for flowdependent correlations and is inexpensive

$$\psi \left(\mathbf{y}^{\mathbf{0}} \right) = \frac{1}{2} \left(\mathbf{y}^{\mathbf{0}} - \mathbf{y}^{\mathbf{b}} \right)^{\mathbf{T}} \mathbf{B}^{-1} \left(\mathbf{y}^{\mathbf{0}} - \mathbf{y}^{\mathbf{b}} \right) + \cdots$$

- Background error repres. considerably impacts the assimilation results
- Typically estimated empirically from multiple model runs (NMC)
- "Correct" mathematical models of background errors are of great interest

$$\delta \mathbf{y}' = \mathbf{M}' \delta \mathbf{y}$$
$$(\mathbf{I} - \Delta t \mathbf{M}')^N \delta \mathbf{y} = \boldsymbol{\xi}$$
$$\mathbf{B}^{-1} = (\mathbf{I} - \Delta t \mathbf{M}' *)^N (\mathbf{I} - \Delta t \mathbf{M}')^N$$

- "Monotonic TLM discretization"
- AR model of background errors
- N Δ t \approx lifetime of the species
- B is flow dep., cheap, full rank

[Constantinescu et.al., 2007]

lech

Adjoints of stiff chemical kinetics: formulation, challenges, and automatic implementation

KPP automatically generates simulation and direct/adjoint sensitivity code for chemistry

Chemical mechanism

[Damian et.al., 1996; Sandu et.al., 2002]

END

Simulation code

Sparse Jacobians, Hessians, and sparse linear algebra routines are automatically generated by KPP

#JACOBIAN [ON | OFF | SPARSE]
JacVar(...), JacVar[TR]_SP_Vec(...)
KppDecomp(...), KppSolve[TR](...)

Methods available in the KPP numerical library

- FIRK 3-stage: Radau-2A (ord.5), Radau-1A (ord.5),
 - Lobatto-3C (ord.4), Gauss (ord.6)
- SDIRK: 2a, 2b (2s, ord.2), 3a (3s, ord.2), 4a, 4b (5s, ord.4)
- Rosenbrock: Ros2, Ros3, ros4, Rodas3, Rodas4.

May 2009

Adjoints for Integral-PDE aerosol dynamic equations: formulation and challenges

Populations of aerosols (particles in the atmosphere) are described by their mass density

Tech

Adjoint aerosol dynamic models are needed to solve inverse problems

$$\frac{\partial \lambda_i}{\partial t} = -\int_0^\infty \beta(m, m') (m')^{-1} \left[\lambda_i(m + m', t) - \lambda_i(m, t) \right] q(m', t) dm' + L\lambda_i \qquad t_+^{k-1} \le t \le t_-^k$$

Continuous adjoint equation

$$-\int_{0}^{\infty} \beta(m',m) m^{-1} \sum_{j=1}^{n} \left[\lambda_{j}(m+m',t) - \lambda_{j}(m,t) \right] q_{j}(m',t) dm' - \sum_{j=1}^{n} H_{j} \lambda_{j} - mH \frac{\partial \lambda_{i}}{\partial m} \\ \lambda_{i}(m,t^{N}) = 0, \quad \lambda_{i}(m,t^{k}_{-}) = \lambda_{i}(m,t^{k}_{+}) + h^{T}_{q_{i}} R^{-1}_{k} \left(y^{k} - h(q^{k}) \right) \\ \lambda_{i}(m,t^{0}) = \lambda_{i}(m,t^{0}_{+}) + p^{T}_{q_{i}} B^{-1} \left(p - p^{B} \right) \quad \lambda_{i}(0,t) = 0.$$

Observations of density in each bin allow the recovery of initial distribution and of parameters

Reference Н Background β 5 Analyzed 10 Vol. Density×1000 4 8 H×100 $\beta \times 10^6$ 4 З 6 2 3 4 2 2 0 10⁻³ 10^{-2} 10^{-1} 20 10° 10 30 40 1 No. of Iterations Particle Volume [µm3] Virginia

Tech

and of parameters [Sandu et. al., 2005; Henze et. al., 2004]

May 2009

Discrete adjoints of advection numerical schemes can become pointwise inconsistent with the adjoint PDE

Different behavior of continuous and discrete adjoin conc cts 1.4 dis limstate 1.2 ××× 0.8 0.6 0.4 02 -0.2 -0.4 L 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2

Change of forward scheme pattern:

- Change of upwinding
- Sources/sinks
- Inflow boundaries scheme Example: 3rd order upwind FD

Active forward limiters act as pseudo-sources in adjoint Example: minmod

[Liu and Sandu, 2005]

Parallelization important to speed up 4D-Var

Distributed, 2-level checkpointing scheme

[Sandu et.al., 2003-2008]

Chemistry w/ abstract vectors

Transport on accelerators

Virginia

lèch

May 2009

STEM: Adjoint sensitivity analysis of non-attainment metrics can help guide policy decisions

Assimilation of ozone data from the ICARTT field campaign in Eastern U.S., July 2004

Observations	Description			
AIRNOW	EPA surface stations, hourly averaged data used			
DC3	Vertical profile of ozone mixing ratio from lidar			
MOZ-FN	MOZAIC, Frankfurt-New York flight			
MOZ-NF	MOZAIC, New York-Frankfurt flight			
P3	NOAA P3-B measurement			
AIRMAP	UV SPECTROSCOPY measurement at 4 sites			
DC8-In	8-In NASA In Situ Ozone via Nitric Oxide Chemiluminescence			
DC8-Li	8-Li DC-8 Composite Tropospheric Ozone Cross-Sections			
RHODE	Ozonesonde/Radiosonde data from Narragansett, RI			
RONBR	Ozonesonde/Radiosonde data from the R/V Ronald H. Brown			

[Chai et al., 2006]

STEM: Assimilation adjusts O₃ predictions considerably at 4pm EDT on July 20, 2004

Observations: circles, color coded by O₃ mixing ratio

May 2009

Assimilation of ozonesonde observations for July 20, 2004, show importance of vertical information

[Chai et al., 2006]

March 5, 2005

Virginia

Tech

Assimilation of of DC-8 in-situ and lidar observations for July 20, 2004

[Chai et al., 2006]

March 5, 2005

Virginia

Tech

SOA: The smallest Hessian eigenvalues (vectors) approximate the principal error components

SOA: Hessian singular vectors approximate the directions of maximum error growth – in finite time

(a) 3D view (5ppb)

(b) East view

(c) Top view

Large scale optimization methods use first and second order adjoint derivatives. BFGS performs well.

	BG	L-BFGS	FR-CG	Daniel	HFN	HYB
Grad.	4147	493	758	491	796	559
RMS	24.7	11.9	12.7	12.7	12.9	12.2
R ²	0.15	0.68	0.65	0.64	0.64	0.67

$$\begin{aligned} \boldsymbol{\lambda}^{0} &= \nabla_{\mathbf{y}^{0}} \boldsymbol{\psi} \\ \boldsymbol{\sigma}^{0} &= \left(\nabla^{2}_{\mathbf{y}^{0}, \mathbf{y}^{0}} \boldsymbol{\psi} \right) \delta \boldsymbol{y}^{0} \end{aligned}$$

Virginia

Tech

[Zhang and Sandu, 2007]

8-th Adjoint Workshop

STEM: The inversion procedure can be extended to emissions, boundary conditions, etc.

Texas: 4am CST July 16 to 8pm CST on July 17, 2004.

STEM: Best observation locations are different for different chemical species

Virginia Tech

May 2009

8-th Adjoint Workshop

GEOS-CHEM-ADJ: Adjoints of satellite-observed ozone with respect to lightning NOx emissions in April 2004

8-th Adjoint Workshop

Assimilation of TES ozone observations in GEOS-Chem

Ensemble-based chemical data assimilation is an alternative to variational techniques

The Ensemble Kalman Filter (EnKF) popular in NWP but not extensively used before with CTMs

Ozonesonde S2 (18 EDT, July 20, 2004)

Virginia

Tech

[Constantinescu et al., 2007]

March 5, 2005

LEnKF assimilation of emissions and boundaries together with the state can improve the forecast

Hybrid DA combines 4D-Var and ensembles. Obtain analysis covariance at the end of assimilation window

Dynamic integration of chemical data and atmospheric models is an important, growing field

The tools needed for 4d-Var chemical data assimilation are in place:

- adjoints for stiff systems, aerosols, transport;
- theoretical and computational understanding of discrete and continuous adjoints;
- second order adjoints
- optimization methods
- singular vectors,
- parallelization, multi-level checkpointing schemes,
- models of background errors
- their strengths demonstrated using real (field campaign) data; ambitious science projects are ongoing

Continuous and discrete adjoints of mass balance equations lead to different computational models

$$\nabla_{\mathbf{y}^0} \psi = \dots + \sum_{k=1}^N \left(\frac{\partial \mathbf{y}^k}{\partial \mathbf{y}^0} \right)^{\mathrm{T}} \left(\mathbf{H}^k \right)^{\mathrm{T}} \mathbf{R}_k^{-1} \left(\mathbf{H}^k \mathbf{y}^k - \mathbf{z}^k \right)$$

8-th Adjoint Workshop

Virginia

Tech

Second order adjoints provide Hessian-vector products useful in optimization and analysis

$$\min_{\mathbf{y}^{0}} \psi \left(\mathbf{y}^{0} \right) = \frac{1}{2} \left(\mathbf{y}^{0} - \mathbf{y}^{b} \right)^{\mathsf{T}} \mathbf{B}^{-1} \left(\mathbf{y}^{0} - \mathbf{y}^{b} \right) + \frac{1}{2} \sum_{k=1}^{\mathsf{N}} \left(\mathbf{H}^{k} \mathbf{y}^{k} - \mathbf{o}^{k} \right)^{\mathsf{T}} \mathbf{R}_{k}^{-1} \left(\mathbf{H}^{k} \mathbf{y}^{k} - \mathbf{o}^{k} \right)$$
$$\lambda^{0} = \nabla_{\mathbf{y}^{0}} \psi \qquad \sigma^{0} = \left(\nabla_{\mathbf{y}^{0}}^{2} \psi \right) \delta y^{0} \qquad \operatorname{cov} \left(\mathbf{y}^{0} \right) = \left(\nabla_{\mathbf{y}^{0}}^{2} \psi \right)^{1}$$

$$\mathbf{y^{n+1}} = \mathbf{y^n} + h\sum_{i=1}^{s} b_i \mathbf{f}(\mathbf{Y^i}), \qquad \mathbf{Y^i} = \mathbf{y^n} + h\sum_{i=1}^{s} a_{i,j} \mathbf{f}(\mathbf{Y^j})$$
$$\mathbf{\delta y^{n+1}} = \mathbf{\delta y^n} + h\sum_{i=1}^{s} b_i \mathbf{J}(\mathbf{Y^i}) \mathbf{\delta Y^i}, \quad \mathbf{\delta Y^i} = \mathbf{\delta y^n} + h\sum_{i=1}^{s} a_{i,j} \mathbf{f}(\mathbf{Y^j}) \mathbf{\delta Y^j}$$

First and Second Order RK Discrete Adjoints (KPP) $\lambda^{\mathbf{n}} = \lambda^{\mathbf{n}+1} + \sum_{i=1}^{s} \mathbf{u}^{i} + \frac{\partial \Phi}{\partial \mathbf{y}^{\mathbf{n}}}, \quad \mathbf{u}^{i} = h \mathbf{J}^{\mathsf{T}} (\mathbf{Y}^{i}) \cdot \left(b_{i} \lambda^{\mathbf{n}+1} + \sum_{j=1}^{s} a_{j,i} \mathbf{u}^{j} \right)$ $\sigma^{\mathbf{n}} = \sigma^{\mathbf{n}+1} + \sum_{i=1}^{s} \mathbf{w}^{i} + \frac{\partial^{2} \Phi}{\partial^{2} \mathbf{y}^{\mathbf{n}}} \delta \mathbf{y}^{\mathbf{n}},$ $\mathbf{w}^{i} = h \mathbf{J}^{\mathsf{T}} (\mathbf{Y}^{i}) \cdot \left(b_{i} \sigma^{\mathbf{n}+1} + \sum_{j=1}^{s} a_{j,i} \mathbf{w}^{j} \right) + h \left(\mathbf{H} (\mathbf{Y}^{i}) \times \delta \mathbf{Y}^{i} \right)^{\mathsf{T}} \cdot \left(b_{i} \lambda^{\mathbf{n}+1} + \sum_{j=1}^{s} a_{j,i} \mathbf{u}^{j} \right)$

[Sandu et. al., 2005]

Virginia

May 2009

CMAQ: discrete advection adjoints match better finite differences than continuous advection adjoints

May 2009

8-th Adjoint Workshop

Virginia

CMAQ: Optimization converges faster with continuous advection adjoints

