Ensemble-based approximation of observation impact using an observation-based verification metric

Matthias Sommer and Martin Weissmann

Hans-Ertel-Centre for Weather Research Data Assimilation Branch Ludwig-Maximilians-Universität München

1 June 2015

Research question

In a complex systems of observations, data assimilation and forecasts...

- How much do the individual observations contribute to the forecast quality?
- Are the observations used in an optimal way?

Motivation

The assessment of observation impact can help...

- to improve the interaction of observations, data assimilation and model
- to exclude data that systematically degrades the forecast.

Methods to determine observation impact

- Data-denial-experiments: Big computational cost
- Adjoint-based methods: Not available for all models, e. g. COSMO
- Ensemble-based methods Kalnay et al. [2012], Liu and Kalnay [2008], Sommer and Weissmann [2014]

Observation impact: Definition

Data denial impact of observations \mathbf{d}' relative to all observations \mathbf{d}

LETKF update equation

$$\bar{\mathbf{x}}_{aj} = \mathsf{X}_{bj} \widetilde{\mathsf{P}}_{a}(j) \mathsf{Y}_{b}^{\mathsf{T}} \mathsf{R}^{-1}(j) (\mathbf{y}_{o} - \bar{\mathbf{y}}_{b}) + \bar{\mathbf{x}}_{bj}$$

Variables

- j : Grid point
- $\overline{\mathbf{x}}_a$: Analysis mean
- X_b : Background ensemble
- $\widetilde{\mathsf{P}}_{\textit{a}}$: Ensemble analysis error covariance matrix

$$\mathsf{W}^{\mathsf{a}}(j) = \left((\mathcal{K}-1)\widetilde{\mathsf{P}}^{\mathsf{a}}(j)
ight)^{rac{1}{2}}$$
 : Weight matrix

- Y_b : Background ensemble in observation space
 - R : Observation error covariance matrix
- $\mathbf{d} = \mathbf{y}_o \overline{\mathbf{y}}_b$: Observational increment
 - $\overline{\mathbf{x}}_b$: Background mean

LETKF update equation

$$\bar{\mathbf{x}}_{aj} = \mathsf{X}_{bj} \widetilde{\mathsf{P}}_{a}(j) \mathsf{Y}_{b}^{\mathsf{T}} \mathsf{R}^{-1}(j) (\mathbf{y}_{o} - \bar{\mathbf{y}}_{b}) + \bar{\mathbf{x}}_{bj}$$

Data denial observation impact

$$\mathcal{J}(\mathsf{d}') = |\mathsf{e}_f^\mathsf{d}|^2 - |\mathsf{e}_f^{\mathsf{d}-\mathsf{d}'}|^2 = \left(\mathsf{e}_f^\mathsf{d} + \mathsf{e}_f^{\mathsf{d}-\mathsf{d}'}
ight) \cdot \left(\mathsf{e}_f^\mathsf{d} - \mathsf{e}_f^{\mathsf{d}-\mathsf{d}'}
ight)$$

Direct derivation [Kalnay et al., 2012]

$$\begin{split} \mathbf{e}_{f}^{\mathbf{d}} - \mathbf{e}_{f}^{\mathbf{0}} &= \overline{\mathbf{x}}_{f}^{\mathbf{d}} - \overline{\mathbf{x}}_{f}^{\mathbf{0}} \approx \frac{1}{K-1} \mathsf{X}_{f}^{\mathbf{d}} (\mathsf{Y}_{b} \mathsf{W}^{\mathbf{d}})^{\mathsf{T}} \mathsf{R}^{-1} \mathbf{d} \\ &\Rightarrow J(\mathbf{d}') \\ &= \left(\mathbf{e}_{f}^{\mathbf{d}} + \mathbf{e}_{f}^{\mathbf{d}-\mathbf{d}'} \right) \cdot \left(\mathbf{e}_{f}^{\mathbf{d}} - \mathbf{e}_{f}^{\mathbf{0}} - \left(\mathbf{e}_{f}^{\mathbf{d}-\mathbf{d}'} - \mathbf{e}_{f}^{\mathbf{0}} \right) \right) \\ &\approx \left(\mathbf{e}_{f}^{\mathbf{d}} + \mathbf{e}_{f}^{\mathbf{d}-\mathbf{d}'} \right) \cdot \left(\frac{1}{K-1} \mathsf{X}_{f}^{\mathsf{d}} (\mathsf{Y}_{b} \mathsf{W}^{\mathsf{d}})^{\mathsf{T}} \mathsf{R}^{-1} \mathbf{d}' \right) \\ &\approx \left(\mathbf{e}_{f}^{\mathbf{d}} + \mathbf{e}_{f}^{\mathbf{0}} \right) \cdot \left(\frac{1}{K-1} \mathsf{X}_{f}^{\mathsf{d}} (\mathsf{Y}_{b} \mathsf{W}^{\mathsf{d}})^{\mathsf{T}} \mathsf{R}^{-1} \mathbf{d}' \right) \end{split}$$

LETKF update equation

$$\bar{\mathbf{x}}_{aj} = \mathsf{X}_{bj} \widetilde{\mathsf{P}}_{a}(j) \mathsf{Y}_{b}^{\mathsf{T}} \mathsf{R}^{-1}(j) (\mathbf{y}_{o} - \bar{\mathbf{y}}_{b}) + \bar{\mathbf{x}}_{bj}$$

Data denial observation impact

$$J(\mathbf{d}') = |\mathbf{e}_f^{\mathbf{d}}|^2 - |\mathbf{e}_f^{\mathbf{d}-\mathbf{d}'}|^2 = \left(\mathbf{e}_f^{\mathbf{d}} + \mathbf{e}_f^{\mathbf{d}-\mathbf{d}'}
ight) \cdot \left(\mathbf{e}_f^{\mathbf{d}} - \mathbf{e}_f^{\mathbf{d}-\mathbf{d}'}
ight)$$

Direct derivation [Kalnay et al., 2012]	Taylor expansion [Sommer and Weissmann, 2015]
$\mathbf{e}_{\mathit{f}}^{d}-\mathbf{e}_{\mathit{f}}^{0}=\bar{\mathbf{x}}_{\mathit{f}}^{d}-\bar{\mathbf{x}}_{\mathit{f}}^{0}\approx\frac{1}{\mathit{K}-1}X_{\mathit{f}}^{d}(Y_{\mathit{b}}W^{d})^{\intercal}R^{-1}d$	$J(\mathbf{d}') = J(0) + \left. \frac{d}{dd'} \right _{\mathbf{d}'=0} J(\mathbf{d}')\mathbf{d}' + \mathcal{O}\left(\left \mathbf{d}' \right ^2 \right)$
$ \Rightarrow J(\mathbf{d}') \\ = \left(\mathbf{e}_{f}^{\mathbf{d}} + \mathbf{e}_{f}^{\mathbf{d}-\mathbf{d}'}\right) \cdot \left(\mathbf{e}_{f}^{\mathbf{d}} - \mathbf{e}_{f}^{0} - \left(\mathbf{e}_{f}^{\mathbf{d}-\mathbf{d}'} - \mathbf{e}_{f}^{0}\right)\right)$	$=2\mathbf{e}_{f}^{\mathbf{d}}\cdot\left(\left\frac{d}{dd'}\right _{\mathbf{d}'=0}\mathbf{e}_{f}^{\mathbf{d}-\mathbf{d}'}\right)\mathbf{d}'+\mathcal{O}\left(\left \mathbf{d}'\right ^{2}\right)$
$\approx \left(\mathbf{e}_{f}^{\mathbf{d}} + \mathbf{e}_{f}^{\mathbf{d}-\mathbf{d}'}\right) \cdot \left(\frac{1}{K-1}X_{f}^{\mathbf{d}}(Y_{b}W^{\mathbf{d}})^{T}R^{-1}\mathbf{d}'\right)$	$= 2\mathbf{e}_{f}^{\mathbf{d}} \cdot \left(\left. \frac{d}{dd'} \right _{\mathbf{d}'=\mathbf{d}} \overline{\mathbf{x}_{f}^{\mathbf{d}'}} \right) \mathbf{d}' + \mathcal{O}\left(\left \mathbf{d}' \right ^{2} \right)$
$\approx \left(\mathbf{e}_{f}^{\mathbf{d}} + \mathbf{e}_{f}^{0}\right) \cdot \left(\frac{1}{K-1} X_{f}^{\mathbf{d}} (Y_{b} W^{\mathbf{d}})^{T} R^{-1} d'\right)$	$\approx 2\mathbf{e}_{f}^{d} \cdot \left(\frac{1}{K-1} X_{f}^{d} (Y_{b} W^{d})^{T} R^{-1} d'\right)$

... analysis [Kalnay et al., 2012]

$$\begin{split} \mathbf{e}_{f} &= \overline{\mathbf{x}_{f}} - \mathbf{x}_{a} \\ |\mathbf{e}_{f}|^{2} &= \sum_{gridpoints} \frac{1}{2} \left(\overline{\mathbf{u}}_{f} - \overline{\mathbf{u}}_{a} \right)^{2} + \frac{1}{2} \left(\overline{\mathbf{v}}_{f} - \overline{\mathbf{v}}_{a} \right)^{2} \\ \Rightarrow J(\mathbf{d}') &\approx 2\mathbf{e}_{f}^{\mathbf{d}} \cdot \left(\frac{1}{K-1} \mathbf{X}_{f}^{\mathbf{d}} (\mathbf{Y}_{b} \mathbf{W}^{\mathbf{d}})^{\mathsf{T}} \mathbf{R}^{-1} \mathbf{d}' \right) \end{split}$$

- + Homogeneous in space and time
- Strongly correlated to forecast

.. observations [Sommer and Weissmann, 2015]

$$\begin{aligned} \mathbf{e}_{f} &= H(\overline{\mathbf{x}_{f}}) - \mathbf{y}_{o} \\ |\mathbf{e}_{f}|^{2} &= \sum_{observations} \left(\frac{H(\overline{\mathbf{x}_{f}}) - \mathbf{y}_{o}}{\sigma} \right)^{2} \\ \Rightarrow J(\mathbf{d}') &\approx 2\mathbf{e}_{f}^{\mathbf{d}} \cdot \left(\frac{1}{K-1} \mathbf{Y}_{f}^{\mathbf{d}} (\mathbf{Y}_{b} \mathbf{W}^{\mathbf{d}})^{\mathsf{T}} \mathbf{R}^{-1} \mathbf{d}' \right) \end{aligned}$$

- + Independent of forecast
- + Computationally easy
 - Unobserved regions/variables may be ignored

DWD Convective-scale assimilation and forecasting systems

Kilometer-scale Ensemble Data Assimilation (KENDA)

• Localized Ensemble Transform Kalman Filter for use with COSMO-DE (in development)

Consortium for Small-scale Modelling (COSMO)

- Operational limited-area model of Deutscher Wetterdienst
- Grid point model of non-hydrostatic equations
- Horizontal resolution: 2.8 km; 50 vertical levels

Figure : COSMO-DE domain (pprox 1300 km imes 1200 km)

Experimental settings

- Test period: 10 June 2012 12:00 UTC 13 June 2012 15:00 UTC
- Initialization every 3 h
- Forecast length 6 h
- 40-members ensemble

Observations used:

- AIREP (Aircrafts): U, V, T
- PROF (Wind profiler): U, V
- SYNOP (Ground stations): U, V, T, RH
- TEMP (Weather Balloons): U, V, T, RH

10 June 2012 12:00 UTC - 13 June 2012 15:00 UTC

Impact per observation type

Total impact

Number of observations

Number of stations

Impact per observation

Impact per observation type

Total impact

Number of observations

Number of stations

Impact per observation

One wind profiler equivals.

- Non-Gaussian distribution
- Ratio of negative to positive values ca. 52:48
- Width of distribution >> Mean

Transformation of x-axis

$$J(\mathbf{d}') = |\mathbf{e}^{\mathbf{d}}|^2 - |\mathbf{e}^{\mathbf{d}-\mathbf{d}'}|^2$$

$$\rightarrow$$

$$\widehat{J}(\mathbf{d}') = \operatorname{sign}(J(\mathbf{d}'))\sqrt{|J(\mathbf{d}')|}$$

Transformation of x-axis

$$J(\mathbf{d}') = |\mathbf{e}^{\mathbf{d}}|^2 - |\mathbf{e}^{\mathbf{d}-\mathbf{d}'}|^2$$

$$\rightarrow$$

$$\widehat{J}(\mathbf{d}') = \operatorname{sign}(J(\mathbf{d}'))\sqrt{|J(\mathbf{d}')|}$$

- Different slopes of negative and positive impact values
- Mismatch with PROF observations

Distribution of impact values

Histogram of individual observations impact values

Probability distribution

$$p(J) \sim e^{-\alpha\sqrt{J}+\beta} \Rightarrow \langle J \rangle = \int dJ J p(J) = -\frac{2}{\alpha^4} e^{-\alpha\sqrt{J}+\beta} \left(6 + 6\alpha\sqrt{J} + 3\alpha^2 J + \alpha^3 J_2^3\right)$$

Impact per observation type

Total impact

AIREP, SYNOP, TEMP

• Qualitative match between approximation and data denial impact

PROF

- Bad match between approximation and data denial impact
- Discrepancy between estimated and smoothed impact hints at insufficient sampling

Reliability indicator

	AIREP	PROF	SYNOP	TEMP
Unfitted impact	-0.0094	-0.0216	-0.0421	-0.0061
Fitted impact	-0.0101	-0.0090	-0.0433	-0.0055
Ratio	0.93	2.39	0.972	1.11

Cumulative distribution function of observation impact from experiment (green) and fit (blue)

• Extreme values contribute only little to total impact (except for PROF)

Observation time vs. impact

- Temporally homogeneous distributions (low dependency on forecast time)
- Extreme PROF values during precipitation event

Spatial impact distribution

Impact per ident

· Low specificity of regions with positive and negative impact

Normalized with number of observations

- Generally large temperature impact
- Small SYNOP wind impact
- Anisotropy of wind components impact

Dependency on verification

Verification with conventional observation types

- Each observation group has the largest impact by verification with itself
- Definition of suitable metric including radar and satellite observations

Weighted metric							
J_B^A : Impact of A when verified with B							
$\widetilde{J}_{\alpha}^{\mathcal{A}} = \frac{\alpha_{AIREP}}{J_{AIREP}^{TOTAL}} J_{AIREP}^{\mathcal{A}} + \frac{\alpha_{PROF}}{J_{PROF}^{TOTAL}} J_{PROF}^{\mathcal{A}} + \frac{\alpha_{SYNOP}}{J_{SYNOP}^{TOTAL}} J_{SYNOP}^{\mathcal{A}} + \frac{\alpha_{TEMP}}{J_{TEMP}^{TOTAL}} J_{TEMP}^{\mathcal{A}}$							
Verification norm	AIREP impact	PROF impact	SYNOP impact	TEMP impact			
J _{25/25/25/25}	23%	31%	32%	13%			
J _{30/30/30/10}	25%	35%	31%	9%			
J _{PS}	37%	-1%	49%	16%			

Data denial

Approximation

Summary

Tool for an approximated assessment of observation impact in an LETKF

- Fast a posteriori estimation of observation impact in a combined analysis and forecasting system
- Modification for the use of observations as verification
- Reliability indication (\rightarrow long averaging needed for stable results)
- Limit the approximation to short forecast times because of
 - Linearisation
 - (Static) localization
- Results depend on verification metric

Outlook

- Assessment of impact of more complex observations (Satellites, radar)
- Longer experiment period and operational implementation (DWD)

Literature

- Eugenia Kalnay, Yoichiro Ota, Takemasa Miyoshi, and Junjie Liu. A simpler formulation of forecast sensitivity to observations: application to ensemble Kalman filters. Tellus A, 64, 2012. ISSN 1600-0870. URL http://www.tellusa.net/index.php/tellusa/article/view/18462.
- Junjie Liu and Eugenia Kalnay. Estimating observation impact without adjoint model in an ensemble Kalman filter. Quarterly Journal of the Royal Meteorological Society, 134(634):1327–1335, 2008. ISSN 1477-870X. doi: 10.1002/qj.280. URL http://dx.doi.org/10.1002/qj.280.
- Matthias Sommer and Martin Weissmann. Observation impact in a convective-scale localized ensemble transform Kalman filter. Quarterly Journal of the Royal Meteorological Society, 140(685):2672–2679, 2014. ISSN 1477-870X. doi: 10.1002/qj.2343. URL http://dx.doi.org/10.1002/qj.2343.
- Matthias Sommer and Martin Weissmann. Estimating observation impact using an observation-based verification metric. Tellus A (submitted), 2015.