Dual space multigrid strategies for variational data assimilation

Ehouarn Simon*
Serge Gratton, Monserrat Rincon-Camacho and Philippe Toint

* INPT, IRIT, Toulouse
ehouarn.simon@enseeiht.fr
1-5 June 2015

Variational data assimilation

Dual formulation

- Concatenation over time:

$$
\min _{\delta x \in \mathbb{R}^{n}} \frac{1}{2}\left\|x-x_{b}+\delta x\right\|_{B^{-1}}^{2}+\frac{1}{2}\|H \delta x-d\|_{R^{-1}}^{2}
$$

with $H \in \mathcal{M}_{m, n}(\mathbb{R})$

- The problem can read:

$$
\begin{aligned}
& \min _{\delta x \in \mathbb{R}^{n}} \frac{1}{2}\left\|x-x_{b}+\delta x\right\|_{B^{-1}}^{2}+\frac{1}{2}\|a\|_{R^{-1}}^{2} \\
& \text { s.t. } a=H \delta x-d
\end{aligned}
$$

- KKT conditions:

$$
\triangleright\left(R^{-1} H B H^{\top}+I_{m}\right) \lambda=R^{-1}\left(d-H\left(x_{b}-x\right)\right), \quad \delta x=x_{b}-x+B H^{\top} \lambda
$$

- RPCG (Gratton and Tshimanga, 2009)
$\triangleright \lambda$: apply (preconditioned) truncated conjugate gradient in the HBH^{\top} inner product (dimension m).
\triangleright Compute δx from λ.
\triangleright Equivalent to the primal approach.
\triangleright Easily truncated without compromising convergence of the GN algorithm.
- Computationally attractive when $m \ll n$.

Observation thinning

Motivations

- "Huge" amount of data (even if the system is under sampled).
\triangleright Assimilation computationally expensive.
- Heterogenous spatial distribution of the observation.
\triangleright Numerous observations in some areas VS few observations in some others.
- Do we need to assimilate all the observations to reach a target accuracy?

Selection of observations

- Criteria
\triangleright Do not assimilate the full data set.
\triangleright Computationally tractable.
- Observations: a nested hierarchy $\left\{\mathcal{O}_{i}\right\}_{i=0}^{r}$ with

$$
\forall i \in[0, r-1], \quad \mathcal{O}_{i} \subset \mathcal{O}_{i+1}
$$

Outline

(1) A "multigrid" observation thinning
(2) Towards a multigrid dual solver?

Outline

(1) A "multigrid" observation thinning

(2) Towards a multigrid dual solver?

A bigrid data assimilation problem (I)

Notations

- \mathcal{O}_{c} the coarse observation set with m_{c} observations and \mathcal{O}_{f} the fine observation set containing m_{f} observations such that $m_{c}<m_{f}$ and $\mathcal{O}_{c} \subset \mathcal{O}_{f}$.
- $\Gamma_{f}: \mathbb{R}^{m_{f}} \rightarrow \mathbb{R}^{m_{c}}$ a restriction operator from the fine observation space to the coarse one.
- Π_{c} the prolongation operator from the coarse observation space to the fine one such as $\Pi_{c}=\sigma_{f} \Gamma_{f}^{T}$ for some $\sigma_{f}>0$.

Fine and coarse subproblems

- The fine observation grid data assimilation problem:

$$
\begin{gather*}
\min _{\delta x_{f} \in \mathbb{R}^{n}} \frac{1}{2}\left\|x+\delta x_{f}-x_{b}\right\|_{B^{-1}}^{2}+\frac{1}{2}\left\|H_{f} \delta x_{f}-d_{f}\right\|_{R_{f}^{-1}}^{2} \tag{1}\\
\triangleright\left(\delta x_{f}, \lambda_{f}\right) \text { s.t. }\left\{\begin{array}{l}
\left(R_{f}^{-1} H_{f} B H_{f}^{T}+I_{m_{f}}\right) \lambda_{f}=R_{f}^{-1}\left(d_{f}-H_{f}\left(x_{b}-x\right)\right) \\
\delta x_{f}=x_{b}-x+B H_{f}^{T} \lambda_{f}
\end{array}\right.
\end{gather*}
$$

A bigrid data assimilation problem (II)

Notations

- \mathcal{O}_{c} the coarse observation set with m_{c} observations and \mathcal{O}_{f} the fine observation set containing m_{f} observations such that $m_{c}<m_{f}$ and $\mathcal{O}_{c} \subset \mathcal{O}_{f}$.
- $\Gamma_{f}: \mathbb{R}^{m_{f}} \rightarrow \mathbb{R}^{m_{c}}$ a restriction operator from the fine observation space to the coarse one.
- Π_{c} the prolongation operator from the coarse observation space to the fine one such as $\Pi_{c}=\sigma_{f} \Gamma_{f}^{T}$ for some $\sigma_{f}>0$.

Fine and coarse subproblems

- The coarse observation grid data assimilation problem:

$$
\min _{\delta x_{c} \in \mathbb{R}^{n}} \frac{1}{2}\left\|x+\delta x_{c}-x_{b}\right\|_{B^{-1}}^{2}+\frac{1}{2}\left\|\Gamma_{f}\left(H_{f} \delta x_{c}-d_{f}\right)\right\|_{R_{c}^{-1}}^{2}
$$

Or equivalently:

$$
\begin{align*}
& \min _{\delta x_{c} \in \mathbb{R}^{n}} \frac{1}{2}\left\|x+\delta x_{c}-x_{b}\right\|_{B^{-1}}^{2}+\frac{1}{2}\left\|\Pi_{c}^{T}\left(H_{f} \delta x_{c}-d_{f}\right)\right\|_{\bar{R}_{c}^{-1}}^{2}, \text { with } \bar{R}_{c}^{-1}=\left(\frac{1}{\sigma_{f}}\right)^{2} R_{c}^{-1} \tag{2}\\
& \triangleright\left(\delta x_{c}, \lambda_{c}\right) \text { s.t. }\left\{\begin{array}{l}
\left(\bar{R}_{c}^{-1} \Pi_{c}^{T} H_{f} B H_{f}^{T} \Pi_{c}+I_{m_{c}}\right) \lambda_{c}=\bar{R}_{c}^{-1} \Pi_{c}^{T}\left(d_{f}-H_{f}\left(x_{b}-x\right)\right) \\
\delta x_{c}=x_{b}-x+B H_{f}^{T} \Pi_{c} \lambda_{c}
\end{array}\right.
\end{align*}
$$

An a posteriori error bound

Theorem

Let δx_{f} be the solution to the fine problem and λ_{f} the corresponding Lagrange multiplier to the constraint. Analogously, let δx_{c} be the solution to modified coarse problem (2) and λ_{c} the corresponding Lagrange multiplier. Then the a posteriori error bound satisfies the inequalities

$$
\begin{aligned}
\left\|\lambda_{f}-\Pi_{c} \lambda_{c}\right\|_{R_{f}+H_{f} B H_{f}^{T}}^{2} \leq\left\|d_{f}-H_{f} \delta x_{c}-R_{f} \Pi_{c} \lambda_{c}\right\|_{\left(R_{f}+H_{f} B H_{f}^{T}\right)^{-1}}^{2} \\
\left\|\lambda_{f}-\Pi_{c} \lambda_{c}\right\|_{R_{f}+H_{f} B H_{f}^{T}}^{2} \leq\left\|d_{f}-H_{f} \delta x_{c}-R_{f} \Pi_{c} \lambda_{c}\right\|_{R_{f}^{-1}}^{2}
\end{aligned}
$$

Remarks

- $R_{f}+H_{f} B H_{f}^{T}$: difficult computation of the inverse in variational data assimilation ($B \sim$ complex matrix-vector operator).
- Bound: no need for the solution of the fine problem $\left(\lambda_{f}\right.$ or $\left.\delta x_{f}\right)$.
- Observations: "useful" if the associated components of $\lambda_{f}-\Pi_{c} \lambda_{c}$ are large.

How to construct \mathcal{O}_{f} from \mathcal{O}_{c} ?

Assumptions

- Coarse observation set: partition of the observation space in a finite number of cells $\left\{c_{j}\right\}_{j=1}^{p_{c}}$ of measures $\left\{w_{j}\right\}_{j=1}^{p_{c}}$.
- Auxiliary set $\tilde{\mathcal{O}}_{f}$: all observations in \mathcal{O}_{c} with the addition of a single additional potential observation point in the interior of each cell.

Selection

- Error indicator for each cell c_{j} of the auxiliary observation set $\tilde{\mathcal{O}}_{f}$

$$
\forall j \in \mathbb{N}_{p} \quad \eta_{j}=w_{j}\left\langle\left.\left(\tilde{d}_{f}-\tilde{H}_{f} \delta x_{c}-\tilde{R}_{f} \tilde{\Pi}_{c} \lambda_{c}\right)\right|_{j},\left.\left(\tilde{R}_{f}^{-1}\left(\tilde{d}_{f}-\tilde{H}_{f} \delta x_{c}-\tilde{R}_{f} \tilde{\Pi}_{c} \lambda_{c}\right)\right)\right|_{j}\right\rangle
$$

- Construction of a minimal set $\mathcal{S}_{\eta}: \theta \sum_{j=1}^{p} \eta_{j} \leq \sum_{k \in \mathcal{S}_{\eta}} \eta_{k}, \quad \theta \in(0,1)$
\triangleright Priority to non-included cells with maximal error indicator values.
- $\mathcal{O}_{f}=\mathcal{O}_{c} \cup\left(\cup_{k \in \mathcal{S}_{\eta}} o_{k}\right)$

An example of observation sets

Coarse observation set \mathcal{O}_{c}
Auxiliary observation set $\tilde{\mathcal{O}}_{f}$

Fine observation set \mathcal{O}_{f}

Incremental 4D-Var with a multigrid observations thinning

(1) Set $i=0$, initialize x and the coarse observation set \mathcal{O}_{0}.
(2) Find the solution $\left(\delta x_{i}, \lambda_{i}\right)$ to the problem

$$
\min _{\delta x_{i} \in \mathbb{R}^{n}} \frac{1}{2}\left\|x_{i}+\delta x_{i}-x_{b}\right\|_{B^{-1}}^{2}+\frac{1}{2}\left\|H_{i} \delta x_{i}-d_{i}\right\|_{R_{i}^{-1}}^{2}
$$

by approximately solving the system

$$
\left(R_{i}^{-1} H_{i} B H_{i}^{T}+I_{m_{i}}\right) \lambda_{i}=R_{i}^{-1}\left(d_{i}-H_{i}\left(x_{b}-x_{i}\right)\right)
$$

using RPCG and then setting $\delta x_{i}=x_{b}-x_{i}+B H_{i}^{\top} \lambda_{i}$.
(3) Given the set of observations \mathcal{O}_{i}, construct the auxiliary set $\tilde{\mathcal{O}}_{i+1}$.
(4) For each cell c_{j} of observation set $\tilde{\mathcal{O}}_{i+1}$ compute the error indicators

$$
\eta_{j}=w_{j}\left\langle\left.\left(\tilde{d}_{i+1}-\tilde{H}_{i+1} \delta x_{i}-\tilde{R}_{i+1} \tilde{P}_{i} \tilde{\lambda}_{i}\right)\right|_{j},\left.\left(\tilde{R}_{i+1}^{-1}\left(\tilde{d}_{i+1}-\tilde{H}_{i+1} \delta x_{i}-\tilde{R}_{i+1} \tilde{P}_{i} \tilde{\lambda}_{i}\right)\right)\right|_{j}\right\rangle
$$

with $\tilde{\lambda}_{i}$ a modified Lagrange multiplier.
(5) Build the set \mathcal{S}_{η} such that

$$
\theta_{1}\left(\sum_{j=1}^{p_{i+1}} \eta_{j}\right) \leq \sum_{k \in \mathcal{S}_{\eta}} \eta_{k}
$$

using the bulk chasing strategy.
(6) Construct the set \mathcal{O}_{i+1} as

$$
\mathcal{O}_{i+1}:=\mathcal{O}_{i} \cup\left(\bigcup_{k \in \mathcal{S}_{\eta}} o_{k}\right)
$$

(7) Update $x_{i} \leftarrow x_{i}+\delta x_{i}$, increment i and return to Step 2.

Example: the Lorenz-96 system

Configuration of the experiment

- Model
$\triangleright u$ is a vector of N-equally spaced entries around a circle of constant latitude.
\triangleright Chaotic behavior for $F>5$ and $N>11$.

$\forall j \in \mathbb{N}_{N}, \quad \theta \in \mathbb{N}_{\Theta}, \frac{d u_{j+\theta}}{d t}=$
$\frac{1}{\kappa}\left(-u_{j+\theta-2} u_{j+\theta-1}+u_{j+\theta-1} u_{j+\theta+1}-u_{j+\theta}+F\right)$ $u_{N}=u_{0} ; u_{-1}=u_{N-1} ; u_{N+1}=u_{1}$
with $N=40, F=8, \kappa=120$ and $\Theta=10$,

$$
T=120 \text { and } \Delta t=\frac{1}{80}
$$

- Background and observations
\triangleright Normal distributed additive noise: $\mathcal{N}\left(0, \sigma_{b / o}^{2}\right)$ with $\sigma_{b}=0.2, \sigma_{o}=0.1$.

Coordinate system

$\triangleright \quad B=\sigma_{b}^{2} I_{n}$ and $R=\sigma_{o}^{2} I_{p}$.
Dynamical system (space and time)

Example: Cost function and RMS error

Outline

(1) A "multigrid" observation thinning
(2) Towards a multigrid dual solver?

Multigrid methods for solving $A x=b$ with iterative methods

 Idea- Large scale components that are slow to converge on the high resolution grid may be reduced faster and at a smaller cost on a coarser resolution grid.
- Also applicable for nonlinear systems (Full Approximation Scheme; Brandt, 1982)

Two-level grids algorithm

- Pre-smoothing: Apply ν_{1} steps of an iterative method S_{1} on a fine grid

$$
A_{f} x_{f}=b_{f}, \quad x_{f}=S_{1}^{\nu_{1}}\left(x_{f}, b_{f}\right)
$$

- Coarse grid correction
- Transfer the residual onto a coarser grid

$$
r_{c}=I_{f}^{c}\left(b_{f}-A_{f} x_{f}\right), \quad I_{f}^{c}: \text { restriction operator }
$$

- Solve the problem on the coarse grid

$$
A_{c} \delta x_{c}=r_{c}
$$

- Transfer the correction onto the fine grid

$$
x_{f}=x_{f}+I_{c}^{f} \delta x_{c}, \quad I_{c}^{f}: \text { interpolation operator }
$$

- Post-smoothing: Apply ν_{2} steps of an iterative method S_{2} (most of the time identical to S_{1}) onto a fine grid

$$
A_{f} x_{f}=b_{f}, \quad x_{f}=S_{2}^{\nu_{2}}\left(f_{x_{f}}, b_{f}\right)
$$

Multigrid methods for solving $A x=b$ with iterative methods

 Cycles

V-cycle

W-cycle

Convergence (Hackbusch, 2003)

- Smoothing property: smoothing steps should remove most of the error at small scales
- Ellipticity of A (high frequencies associated to the largest eigenvalues).
- Smoothing properties of the iterative solver.
- Prolongation/restriction operators: no amplification of the small scale components during a coarse correction step.
- Approximation properties: coarse grid correction steps should remove the error at large scales.
- A_{c} close to A_{f} (discretization of the differential operator, $A_{c}=I_{f}^{c} A_{f} I_{c}^{f}$)

Multigrid methods in variational data assimilation

First-order necessary condition: $\nabla J(x)=0$.

- Optimal control, constrained-PDE optimization: Brandt, Lewis and Nash (2005), Borzi and Schulz (2009).
- 4D-variational data assimilation: Neveu et al. (2011), Cioaca et al. (2013).
\triangleright State space formulation.
- Dual space formulation: $A=H B H^{T}+R ; \quad b=d-H\left(x_{b}-x\right)$.

Numerical experiments

- Solution of a linear advection equation:

$$
\frac{\partial u}{\partial t}+c \frac{\partial u}{\partial x}=0, \text { with } c>0, x \in[0, L], t \in[0, T]
$$

with $c=1 \mathrm{~m} . \mathrm{s}^{-1}, L=100 \mathrm{~m}, T=78.125 \mathrm{~s}$

- Control variable: $u(t=0)$.
- $B=\sigma_{b}^{2} e^{-\frac{d^{2}}{L^{2} \text { corr}}}, \quad R=\sigma_{o}^{2} l$.
- No observation thinning strategy: uniform observation grid at each level (3).

Numerical application

Primal approach: 1 V-cycle.

Dual approach: 100 V -cycles.

Multigrid dual approach

- Increase of the residual after each coarse grid correction step.
- Conditions of convergence not fulfilled.

Conclusion and perspectives

- A variational data assimilation approach combining observation thinning and dual-space conjugate-gradient techniques.
\triangleright Exploiting the nested structure of the observations.
\triangleright A posteriori error bounds based on Lagrange multipliers.
- Preliminary experiments.
\triangleright Faster decrease of the cost function vs the amount of assimilated observations or flops.
- Preliminary experiments with a multigrid solver in dual space.
\triangleright No improvement of the performances compared to an unigrid solver (even worst).
\triangleright Characteristics of the problem not suitable for multigrid strategy? (Lagrange multipliers \sim "noise")
- Further investigations
\triangleright Modelling of the observation error covariance matrix properly taking into account the nested structure of the observations.

Thank you!

Example: Observation sets and adaptive errors

\mathcal{O}_{i}

η_{j}

\mathcal{O}_{i+1}

$\epsilon_{j}=w_{j}\left\langle\Delta \lambda_{i+1}\right| j,\left[\left(\tilde{R}_{i+1}+\tilde{H}_{i+1} B \tilde{H}_{i+1}^{T}\right) \Delta \lambda_{i+1}\right]|j\rangle$

Example: Control variable

Algorithm solution and true $u(0)$

Example 2: 1D wave system with a shock

Configuration of the experiment

- Model

$$
\begin{aligned}
& \frac{\partial^{2}}{\partial t^{2}} u(z, t)-\frac{\partial^{2}}{\partial z^{2}} u(z, t)+f(u)=0 \\
& u(0, t)=u(1, t)=0 \\
& u(z, 0)=u_{0}(z), \frac{\partial}{\partial t} u(z, 0)=0 \\
& 0 \leq t \leq T, \quad 0 \leq z \leq 1
\end{aligned}
$$

with $f(u)=\mu e^{\eta u}, \Delta x \approx 2.8 \cdot 10^{-3}(360$ grid points), $T=1$ and $\Delta t=\frac{1}{64}$.

- Background and observations
\triangleright Normal distributed additive noise: $\mathcal{N}\left(0, \sigma_{b / o}^{2}\right)$ with $\sigma_{b}=0.2, \sigma_{o}=0.05$.
$\triangleright B=\sigma_{b}^{2} I_{n}$ and $R=\sigma_{o}^{2} I_{p}$.

Example 2: Observation sets and adaptive errors

\mathcal{O}_{i}

η_{j}

\mathcal{O}_{i+1}

$\epsilon_{j}=w_{j}\left\langle\left.\Delta \lambda_{i+1}\right|_{j},\left.\left[\left(\tilde{R}_{i+1}+\tilde{H}_{i+1} B \tilde{H}_{i+1}^{T}\right) \Delta \lambda_{i+1}\right]\right|_{j}\right\rangle$

Example 2: Control variable

Background vector and true $u(0)$

Algorithm solution and true $u(0)$

Example 2: Cost function and RMS error

Bibliography

- Borzi A. and Schulz V.: Multigrid methods for PDE optimization, SIAM Rev., 51 (2), 361-395, 2009.
- Brandt A.: Guide to a multigrid development, Multigrid Methods, Lecture Notes in Mathematics, Hackbush, Trottenber (eds), Springer Berlin Heidelberg, 960, 220-312, 1982.
- Cioca A., Sandu A., de Sturler E.: Efficient methods for computing observation impact in 4D-Var data assimilation, Comput. Geosci., 17, 975-990, 2013.
- Debreu L., Neveu E., Simon E., Le Dimet F.-X., Vidard A.: Multigrid solvers and multigrid preconditioners for the solution of variational data assimilation problems, In revision.
- Gratton S., Rincon-Camacho M., Simon E. and Toint P.: Observations thinning in data assimilation computations, EURO Journal on Computational Optimization, 3, 31-51, 2015.
- Gratton S. and Tshimanga J.: An observation-space formulation of variational assimilation using a restricted preconditioned conjugates gradient algorithm, Quarterly Journal of the Royal Meteorological Society, 135, 1573-1585, 2009.
- Lewis R.M. and Nash S.G.: Model problems for the multigrid optimization of systems governed by differential equations, SIAM J. Sci. Comput., 26 (6), 1811-1837, 2005.
- Neveu E., Debreu L., Le Dimet F.-X.: Multigrid methods and data assimilation: Convergence study and first experiments on nonlinear equations, ARIMA, 14, 63-80, 2011.

