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Main benefits of frequent analysis updates

(i) Hourly update for global analysis enables timely BCs for
possible/likely future hourly running of UKV and other LAMs

(ii) Error in linear approximation to smooth function declines
quadratically with increment size

φ(x + δx) = φ(x) + φ′(x)δx +
1
2
φ′′(x)(δx, δx) + ...

hourly update→ smaller increment→ (hopefully) improved PF
Model performance

(iii) Potentially, improved affordability

More on these later.
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Scheduling of global main and update runs
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HPC resources used for global 4D-Var
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Need optimal (Bayesian) estimation theory for overlapping
windows.

Suppose that we at time k the following vectors of observations
have just become available:

y(k)
k valid at time k

y(k)
k−1 valid at time k − 1
·
·
y(k)

k−L valid at time k − L

Superscripts denote when the obs are available and subscripts
their validity time, the longest time interval to availability being L
time steps.
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Observation validity time
k − 2 k − 1 k k + 1

(k − 2) y(k−2)
k−2

Obs (k − 1) y(k−1)
k−2 y(k−1)

k−1

availability (k) y(k)
k−2 y(k)

k−1 y(k)
k

time (k + 1) y(k+1)
k−1 y(k+1)

k y(k+1)
k+1

(k + 2) y(k+2)
k y(k+2)

k+1

Table: Notation for observation validity and availability times
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Define y
k

to be the obs just available and therefore used at time
k, so

y
k
=















y(k)
k

y(k)
k−1
·
·

y(k)
k−L















(1)

Supposing

xi+1 = f(xi) + ωi where ωi ∼ N(0, Qi)

set

xk =











xk

xk−1
...

xk−L











, f(xk) =











f(xk)
xk
...

xk−L+1











, ωk =











ωk

0
...
0











(2)

so
xk+1 = f(xk) + ωk
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Supposing also that

y(k)
i = H(k)

i xi + ν
(k)
i where ν

(k)
i ∼ N(0, R(k)

i )

and setting

νk =













ν
(k)
k

ν
(k)
k−1
...

ν
(k)
k−L













Hk =













H(k)
k

H(k)
k−1

. . .

H(k)
k−L













, Q
k
=











Qk

0
. . .

0











etc
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Thus our system can be written

xk+1 = f(xk) + ωk

y
k
= Hkxk + νk

for

νk ∼ N(0, Rk)

ωk ∼ N(0, Q
k
)

and our problem is to find

E[xk|y0
, y

1
, .., y

k
]

This is now in a form to which we can apply standard filtering
theory.
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Eg, consider case where f is linearisable.

We have

f′(xk) =













f′(xk) 0 0 0 0
I 0 0 0 0
0 I 0 0 0
· · · · ·
0 0 0 0 0













and overlapping window problem is solved by applying
Extended Kalman Filter to extended states/operators:
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Given first guesses x̂L|L−1, PL|L−1

For k = L, L + 1, L + 2, ..

Assimilate:

K = Pk|k−1HT
k (Rk + HkPk|k−1HT

k )−1

x̂k|k = x̂k|k−1 + K(y
k
− Hkx̂k|k−1)

Pk|k = (I − KHk)Pk|k−1

Predict:

x̂k+1|k = f(x̂k|k)

Pk+1|k = f′(x̂k|k)Pk|kf′(x̂k|k)
T + Q

k

End for k = L, L + 1, L + 2, ..
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Remarks

• Above is EKF solution, but can equally well use unscented
KF, ensemble SRF, etc

• It is a sequential solution which is equivalent to assimilating
all obs up to that time simultaneously

• Full solution only involves model (or PF model) integration
over last time slot, however

• the solution involves carrying nL× 1 state vectors and nL× nL
covariance matrices (more on this later)

• If all new obs occur only in last time slot simplifies to EKS

• Solution is equivalent to a modified version of 4D-Var, as
shown on next slide:
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Suppose L = 2 and the analysis error covariance at the end of
previous window {i− 2, i− 1, i} is

Ai =





Ai,i Ai,i−1 Ai,i−2

Ai−1,i Ai−1,i−1 Ai−1,i−2

Ai−2,i Ai−2,i−1 Ai−2,i−2





The optimal solution derived above for window {i− 1, i, i + 1} is
equivalent to the extended 4D-Var problem: minimise

1
2

(

δi

δi−1

)T (

Ai,i Ai,i−1

Ai−1,i Ai−1,i−1

)−1 (

δi

δi−1

)

+

1
2

i+1
∑

i−1

(y(i+1)
j − (xg

j + δj))
T R−1(y(i+1)

j − (xg
j + δj)) +

1
2
(δi+1 −Mi+1

i δi)
TQ−1(δi+1 −Mi+1

i δi)
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First issue: size of states and covariances .

The state vectors are nL × 1 and covariance matrices nL× nL,
ie, enormous!

Several approximations possible, eg

Retain from the previous analysis stage merely xa
i−L+1 and its

n× n error covariance Ai−L+1,i−L+1, which will be used as the
background state and its covariance at the beginning of the new
sliding window, to be performed by weak constraint 4D-Var.
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Optimal solution:




xg
i+1
xg

i
xg

i−1



 =





fi+1
i (xa

i )
xa

i
xa

i−1





Then minimise

1
2

(

δi

δi−1

)T (

Ai,i Ai,i−1

Ai−1,i Ai−1,i−1

)−1 (

δi

δi−1

)

+

1
2

i+1
∑

i−1

(y(i+1)
j − (xg

j + δj))
T R−1(y(i+1)

j − (xg
j + δj)) +

1
2
(δi+1 −Mi+1

i δi)
TQ−1(δi+1 −Mi+1

i δi)

Then




xa
i+1
xa

i
xa

i−1



 =





xg
i+1
xg

i
xg

i−1



 +





δi+1

δi

δi−1




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Approximation:




xg
i+1
xg

i
xg

i−1



 =





fi+1
i−1(x

a
i−1)

fi
i−1(x

a
i−1)

xa
i−1





Then minimise
1
2
δ

T
i−1

(

Ai−1,i−1
)−1

δi−1 +

1
2

i+1
∑

i−1

(y(i+1)
j − (xg

j + δj))
T R−1(y(i+1)

j − (xg
j + δj)) +

1
2
(δi −Mi

i−1δi−1)
T Q−1(δi −Mi

i−1δi−1) +

1
2
(δi+1 −Mi+1

i δi)
TQ−1(δi+1 −Mi+1

i δi)

Then




xa
i+1
xa

i
xa

i−1



 =





xg
i+1
xg

i
xg

i−1



 +





δi+1

δi

δi−1




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Several other approximations possible, all sharing property that
they converge to optimal solution as model error Q→ 0.

Practically, Issue 1 is likely to be tractable.

Maybe more significant is

Second Issue, cycling of error covariances

Currently, the background error covariances used for large
scale DA are largely climatological. Overcoming this by use of
longer window is still one option, though costly if performing
analyses hourly.
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Use of longer windows in RUC as one way to overcome
shortcomings of fixed B.

Tiny example for illustrative purposes:

Suppose for each validity time i two obs eventually become
available, y(i)

i at time i and y(i+1)
i at time i + 1.

Model is
xi+1 = rixi

where ri is randomly drawn from U[1, 2].

At time i we assimilate (with fixed B) either

(1) y(i)
i−1 and y(i)

i ;

(2) y(i−1)
i−2 , y(i−1)

i−1 , y(i)
i−1 and y(i)

i ;

(3) y(i−3)
i−4 , y(i−3)

i−3 , y(i−2)
i−3 , y(i−2)

i−2 , y(i−1)
i−2 , y(i−1)

i−1 , y(i)
i−1 and y(i)

i ;
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Mean square analysis error at end of window (so all methods
have seen same obs) can be calculated in closed form.
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So for hourly analyses we could do something like this ...
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Alternatively we can go back to the optimal solution and
attempt to cycle covariances (approximately) correctly.

Several possibilities:

(a) Estimate posterior covariance from Var Hessian using
limited memory quasi-Newton (‘LM Q-N’) machinery, and
evolve to next time level by solving auxiliary (also LM Q-N)
minimisation problem (cf ‘VKF’);

(b) As (a) but use CG/Lanczos (cf ‘EVIL’)

(c) Use ensemble square root filter (cf current hybrid)
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Cycling of covariances by LM Q-N

Exploit following facts:

• Analysis error covariance A in principle equals inverse of
Hessian H of J

•With LM Q-N methods such as BFGS, at each iteration the
estimate of H−1

H−1
est ← H−1

est + rank 2 matrix

• Given (a low rank estimate of) A the inverse Hessian of

xT(MAMT + Q)x

is B−1, the inverse of the background error covariance required
at the next cycle.
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Remarks

To get good approx to H−1
est need to reformulate problem so that H is

pert to identity

Can achieve this by preconditioning by U where

UUT = diag(B, Q, Q, ..)

Then in limit of zero-sized subspace, method collapses to 4D-Var with
non-cycled climatological B.

The estimation of the analysis covariance is effectively zero cost.

Can increase rank of covariance approximations by

• Accumulating vector pairs over many cycles (LM Q-N well suited to
this)

(also, may be scope for parallelism in computation of vector pairs)

• Exploiting structure of problem (‘partial separability’)
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Estimation of covariances by ensemble SRF

More than one way to use ensemble SRF for covariances

One way is based directly on optimal strategy, where basic
objects are nL × 1 vectors and nL × nL covariance matrices

Estimate climatological Bclim by bootstrapping, then

Run optimal strategy in its variational form (for the analysis)
and ensemble SRF (for the adaptive part of the covariances) in
tandem, using for the prior covariance B a convex combination
of Bclim and the ensemble SRF estimate Bens

In this case the ensemble is only run for one time slot, from
i− 1 to i.
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Concluding Remarks

There are several potential benefits from frequent update cycling,
including timely boundary conditions for LAMs, and potentially better
performance and affordability.

For frequent analyses the assimilation windows will normally overlap.
An optimal Bayesian solution to this problem is readily obtained.

In the presence of model error this solution involves cycling large
state vectors and covariance matrices. One can readily construct
approximate approaches involving same-sized quantities to present.

To overcome the limitations of a largely climatological prior covariance
B a long window approach is still possible, though now costly.

Alternatively, several options exist for covariance cycling, including
the use of appropriately constructed ensembles.
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