Optimized localization and hybridization to filter ensemble-based covariances

Benjamin Ménétrier and Tom Auligné NCAR - Boulder - Colorado

Roanoke - 06/04/2015

Acknowledgement: AFWA

Introduction ●○○	Linear filtering	Joint optimization	Results	Conclusions
Introductio	n			

Introduction ●○○	Linear filtering	Joint optimization	Results	Conclusions
Introduction	n			

• DA often relies on forecast error covariances.

Introduction ●○○	Linear filtering	Joint optimization	Results	Conclusions
Introduction	า			

- DA often relies on forecast error covariances.
- This matrix can be sampled from an ensemble of forecasts.

Introduction ●○○	Linear filtering	Joint optimization	Results	Conclusions
Introduction	n			

- DA often relies on forecast error covariances.
- This matrix can be sampled from an ensemble of forecasts.
- Sampling noise arises because of the limited ensemble size.

Introduction ●○○	Linear filtering	Joint optimization	Results	Conclusions
Introductio	n			

- DA often relies on forecast error covariances.
- This matrix can be sampled from an ensemble of forecasts.
- Sampling noise arises because of the limited ensemble size.
- Question: how to filter this sampling noise?

Introduction ●○○	Linear filtering	Joint optimization	Results	Conclusions
Introductio	n			

- DA often relies on forecast error covariances.
- This matrix can be sampled from an ensemble of forecasts.
- Sampling noise arises because of the limited ensemble size.
- Question: how to filter this sampling noise?

Usual methods:

Introduction ●○○	Linear filtering	Joint optimization	Results	Conclusions
Introductio	n			

- DA often relies on forecast error covariances.
- This matrix can be sampled from an ensemble of forecasts.
- Sampling noise arises because of the limited ensemble size.
- Question: how to filter this sampling noise?

Usual methods:

- Covariance localization
 - \rightarrow tapering with a localization matrix

Introduction ●○○	Linear filtering	Joint optimization	Results	Conclusions
Introductio	n			

- DA often relies on forecast error covariances.
- This matrix can be sampled from an ensemble of forecasts.
- Sampling noise arises because of the limited ensemble size.
- Question: how to filter this sampling noise?

Usual methods:

- Covariance localization
 - ightarrow tapering with a localization matrix
- Covariance hybridization
 - \rightarrow linear combination with a static covariance matrix

Introduction ○●○	Linear filtering	Joint optimization	Results	Conclusions
Introductio	n			

Introduction ○●○	Linear filtering	Joint optimization	Results	Conclusions
Introductio	n			

1. Can localization and hybridization be considered together?

Introduction ○●○	Linear filtering	Joint optimization	Results	Conclusions
Introduction	n			

- 1. Can localization and hybridization be considered together?
- 2. Is it possible to optimize localization and hybridization coefficients **objectively and simultaneously**?

Introduction ○●○	Linear filtering	Joint optimization	Results	Conclusions
Introduction	ı			

- 1. Can localization and hybridization be considered together?
- 2. Is it possible to optimize localization and hybridization coefficients **objectively and simultaneously**?
 - The method should:

Introduction ○●○	Linear filtering	Joint optimization	Results	Conclusions
Introduction	ı			

- 1. Can localization and hybridization be considered together?
- 2. Is it possible to optimize localization and hybridization coefficients **objectively and simultaneously**?
 - The method should:

Introduction ○●○	Linear filtering	Joint optimization	Results	Conclusions
Introductior	ו			

- 1. Can localization and hybridization be considered together?
- 2. Is it possible to optimize localization and hybridization coefficients **objectively and simultaneously**?
 - The method should:
 - use data from the ensemble only.

Introduction ○●○	Linear filtering	Joint optimization	Results	Conclusions
Introduction	n			

- 1. Can localization and hybridization be considered together?
- 2. Is it possible to optimize localization and hybridization coefficients **objectively and simultaneously**?
 - The method should:
 - use data from the ensemble only.
 - be affordable for high-dimensional systems.

Introduction ○●○	Linear filtering	Joint optimization	Results	Conclusions
Introductior	ו			

- 1. Can localization and hybridization be considered together?
- 2. Is it possible to optimize localization and hybridization coefficients **objectively and simultaneously**?
 - The method should:
 - use data from the **ensemble only**.
 - be affordable for high-dimensional systems.
- 3. Is hybridization **always** improving the accuracy of forecast error covariances?

Introduction ○○●	Linear filtering	Joint optimization	Results	Conclusions
Outline				

Introduction

Linear filtering of sample covariances

Joint optimization of localization and hybridization

Results

Conclusions

Introduction	Linear filtering ००	Joint optimization	Results	Conclusions
Outline				

Introduction

Linear filtering of sample covariances

Joint optimization of localization and hybridization

Results

Conclusions

Introduction	Linear filtering ●○	Joint optimization	Results	Conclusions
Lincor filt	oring of comple	- coveriences		

Linear filtering of sample covariances

Introduction	Linear filtering	Joint optimization	Results	Conclusions
000	• •	0000	000	00
Linear filte	ering of sample	e covariances		
	ang or sumpr	e covariances		

An ensemble of N forecasts $\{\widetilde{\mathbf{x}}_p^b\}$ is used to sample $\widetilde{\mathbf{B}}$:

$$\widetilde{\mathbf{B}} = \frac{1}{N-1} \sum_{\rho=1}^{N} \delta \widetilde{\mathbf{x}}^{b} (\delta \widetilde{\mathbf{x}}^{b})^{\mathrm{T}}$$

re: $\delta \widetilde{\mathbf{x}}_{\rho}^{b} = \widetilde{\mathbf{x}}_{\rho}^{b} - \langle \widetilde{\mathbf{x}}^{b} \rangle$ and $\langle \widetilde{\mathbf{x}}^{b} \rangle = \frac{1}{N} \sum_{\rho=1}^{N} \widetilde{\mathbf{x}}_{\rho}^{b}$

where:

Introduction	Linear filtering ●○	Joint optimization	Results	Conclusions
Linear filte	ering of sample	e covariances		

An ensemble of N forecasts $\{\widetilde{\mathbf{x}}_{p}^{b}\}$ is used to sample $\widetilde{\mathbf{B}}$:

$$\widetilde{\mathbf{B}} = \frac{1}{N-1} \sum_{p=1}^{N} \delta \widetilde{\mathbf{x}}^{b} (\delta \widetilde{\mathbf{x}}^{b})^{\mathrm{T}}$$
where: $\delta \widetilde{\mathbf{x}}_{p}^{b} = \widetilde{\mathbf{x}}_{p}^{b} - \langle \widetilde{\mathbf{x}}^{b} \rangle$ and $\langle \widetilde{\mathbf{x}}^{b} \rangle = \frac{1}{N} \sum_{p=1}^{N} \widetilde{\mathbf{x}}_{p}^{b}$

Asymptotic behavior: if $N \to \infty$, then $\, \widetilde{B} \to \widetilde{B}^{\star} \,$

Introduction	Linear filtering ●○	Joint optimization	Results	Conclusions	
Linear filtering of sample covariances					
An ensem	ble of <i>N</i> forecasts	$\{\widetilde{x}_p^b\}$ is used to sam	nple <u> </u> :		

 $\widetilde{\mathbf{B}} = \frac{1}{N-1} \sum_{n=1}^{N} \delta \widetilde{\mathbf{x}}^{b} (\delta \widetilde{\mathbf{x}}^{b})^{\mathrm{T}}$

where: $\delta \widetilde{\mathbf{x}}_{p}^{b} = \widetilde{\mathbf{x}}_{p}^{b} - \langle \widetilde{\mathbf{x}}^{b} \rangle$ and $\langle \widetilde{\mathbf{x}}^{b} \rangle = \frac{1}{N} \sum_{p=1}^{N} \widetilde{\mathbf{x}}_{p}^{b}$

Asymptotic behavior: if $N \to \infty$, then $\widetilde{B} \to \widetilde{B}^*$ In practice, $N < \infty \Rightarrow$ sampling noise $\widetilde{B}^e = \widetilde{B} - \widetilde{B}^*$

Introduction	Linear filtering ●○	Joint optimization	Results	Conclusions	
Linear filt	ering of sample	e covariances			

 $\widetilde{\mathbf{B}} = \frac{1}{\sum} \sum_{k=1}^{N} \delta \widetilde{\mathbf{x}}^{k} (\delta \widetilde{\mathbf{x}}^{k})^{\mathrm{T}}$

An ensemble of N forecasts $\{\widetilde{\mathbf{x}}_{p}^{b}\}$ is used to sample $\widetilde{\mathbf{B}}$:

where:
$$\delta \widetilde{\mathbf{x}}_{p}^{b} = \widetilde{\mathbf{x}}_{p}^{b} - \langle \widetilde{\mathbf{x}}^{b} \rangle$$
 and $\langle \widetilde{\mathbf{x}}^{b} \rangle = \frac{1}{N} \sum_{p=1}^{N} \widetilde{\mathbf{x}}_{p}^{b}$

Asymptotic behavior: if $N \to \infty$, then $\widetilde{B} \to \widetilde{B}^{\star}$ In practice, $N < \infty \Rightarrow$ sampling noise $\widetilde{B}^e = \widetilde{B} - \widetilde{B}^{\star}$

Theory of sampling error:

$$\mathbb{E}[\widetilde{B}_{ij}^2] = \frac{N(N-3)}{(N-1)^2} \mathbb{E}[\widetilde{B}_{ij}^{\star 2}] - \frac{1}{(N-1)(N-2)} \mathbb{E}[\widetilde{B}_{ii}\widetilde{B}_{jj}] + \frac{N^2}{(N-1)^2(N-2)} \mathbb{E}[\widetilde{\Xi}_{ijij}]$$

Introduction	Linear filtering	Joint optimization	Results	Conclusions
000	•	0000	000	00
Linear filte	ring of sample	e covariances		
	ang or sampre			

Localization by L (Schur product)

Covariance matrix

 $\widehat{B} = L \circ \widetilde{B}$

Introduction	Linear filtering ⊙●	Joint optimization	Results	Conclusions		
Linear filtering of sample covariances						
	Localizatio	n by L (Schur produ	ct)			
Cova	ariance matrix		ncrement			
	$\widehat{\mathbf{B}} = \mathbf{L} \circ \widetilde{\mathbf{B}}$	$\delta x^e = rac{1}{\sqrt{N-1}}$	$= \sum_{p=1}^{N} \delta \widetilde{\mathbf{x}}_{p}^{b} \mathbf{d}$	$\left(L^{1/2}v_{p}^{lpha} ight)$		

Introduction	Linear filtering ○●	Joint optimization	Results	Conclusions
Linear filte	ering of sample	e covariances		
Cova	Localization Localization $\widehat{\mathbf{B}} = \mathbf{L} \circ \widetilde{\mathbf{B}}$	on by L (Schur produ $\delta \mathbf{x}^e = rac{1}{\sqrt{N-2}}$	$\frac{1}{1}\sum_{p=1}^{N}\delta\tilde{x}_{p}^{b}$	$\left(L^{1/2}v_p^{lpha}\right)$
	Localization b	y L + hybridization	with $\overline{\mathbf{B}}$	

Increment

$$\delta \mathbf{x} = \boldsymbol{\beta}^{e} \ \delta \mathbf{x}^{e} + \boldsymbol{\beta}^{c} \ \overline{\mathbf{B}}^{1/2} \mathbf{v}^{c}$$

Introduction	Linear filtering	Joint optimization	Results	Conclusions
Outline				

Introduction

Linear filtering of sample covariances

Joint optimization of localization and hybridization

Results

Conclusions

Introduction	Linear filtering	Joint optimization	Results	Conclusions
laint antir	nization, stan	1		

Step 1: optimizing the localization only, without hybridization

Introduction	Linear filtering	Joint optimization	Results	Conclusions
laint antir	nization, stan	1		

Step 1: optimizing the localization only, without hybridization

Goal: to minimize the expected quadratic error:

$$e = \mathbb{E}\left[\left\| \underbrace{\mathsf{L} \circ \widetilde{\mathsf{B}}}_{\text{Localized } \widetilde{\mathsf{B}}} - \underbrace{\widetilde{\mathsf{B}}^{\star}}_{\text{Asymptotic } \widetilde{\mathsf{B}}} \right\|^{2} \right]$$
(1)

Introduction	Linear filtering	Joint optimization	Results	Conclusions
laint antir	nization, stan	1		

Step 1: optimizing the localization only, without hybridization

Goal: to minimize the expected quadratic error:

$$e = \mathbb{E}\left[\left\| \underbrace{\mathsf{L} \circ \widetilde{\mathsf{B}}}_{\text{Localized } \widetilde{\mathsf{B}}} - \underbrace{\widetilde{\mathsf{B}}^{\star}}_{\text{Asymptotic } \widetilde{\mathsf{B}}} \right\|^{2} \right]$$
(1)

Light assumptions:

Introduction	Linear filtering	Joint optimization	Results	Conclusions
بالمراجع المراجع		1		

Step 1: optimizing the localization only, without hybridization

Goal: to minimize the expected quadratic error:

$$\mathbf{e} = \mathbb{E} \left[\| \underbrace{\mathbf{L} \circ \widetilde{\mathbf{B}}}_{\text{Localized } \widetilde{\mathbf{B}}} - \underbrace{\widetilde{\mathbf{B}}^{\star}}_{\text{Asymptotic } \widetilde{\mathbf{B}}} \|^{2} \right]$$
(1)

Light assumptions:

• The unbiased sampling noise $\widetilde{B}^e = \widetilde{B} - \widetilde{B}^*$ is not correlated with the asymptotic sample covariance matrix \widetilde{B}^* .

Introduction	Linear filtering	Joint optimization	Results	Conclusions
Table and	ata ata a sa sa	1		

Step 1: optimizing the localization only, without hybridization

Goal: to minimize the expected quadratic error:

$$\mathbf{e} = \mathbb{E} \left[\| \underbrace{\mathbf{L} \circ \widetilde{\mathbf{B}}}_{\text{Localized } \widetilde{\mathbf{B}}} - \underbrace{\widetilde{\mathbf{B}}^{\star}}_{\text{Asymptotic } \widetilde{\mathbf{B}}} \|^{2} \right]$$
(1)

Light assumptions:

- The unbiased sampling noise $\widetilde{B}^e = \widetilde{B} \widetilde{B}^*$ is not correlated with the asymptotic sample covariance matrix \widetilde{B}^* .
- The two random processes generating the asymptotic \widetilde{B}^{\star} and the sample distribution are independent.

Introduction	Linear filtering	Joint optimization	Results	Conclusions
		1		

Step 1: optimizing the localization only, without hybridization

Goal: to minimize the expected quadratic error:

$$\mathbf{e} = \mathbb{E} \left[\| \underbrace{\mathbf{L} \circ \widetilde{\mathbf{B}}}_{\text{Localized } \widetilde{\mathbf{B}}} - \underbrace{\widetilde{\mathbf{B}}^{\star}}_{\text{Asymptotic } \widetilde{\mathbf{B}}} \|^{2} \right]$$
(1)

Light assumptions:

- The unbiased sampling noise $\widetilde{B}^e = \widetilde{B} \widetilde{B}^*$ is not correlated with the asymptotic sample covariance matrix \widetilde{B}^* .
- The two random processes generating the asymptotic \widetilde{B}^\star and the sample distribution are independent.

An **explicit formula** for the optimal localization **L** is given in Ménétrier et al. 2015 (Montly Weather Review).

Introduction	Linear filtering	Joint optimization ○●○○	Results	Conclusions
loint ontir	nization ston	1		

This formula of optimal localization ${\sf L}$ involves:

- the ensemble size N
- the sample covariance $\widetilde{\textbf{B}}$
- the sample fourth-order centered moment Ξ

Introduction	Linear filtering	Joint optimization ○●○○	Results	Conclusions
1.	· . · · · · ·			

This formula of optimal localization ${\sf L}$ involves:

- the ensemble size N
- the sample covariance $\widetilde{\textbf{B}}$
- the sample fourth-order centered moment $\widetilde{\Xi}$

$$L_{ij} = \frac{(N-1)^2}{N(N-3)}$$
$$-\frac{N}{(N-2)(N-3)} \frac{\mathbb{E}\left[\widetilde{\Xi}_{ijij}\right]}{\mathbb{E}\left[\widetilde{B}_{ij}^2\right]}$$
$$+\frac{N-1}{N(N-2)(N-3)} \frac{\mathbb{E}\left[\widetilde{B}_{ii}\widetilde{B}_{jj}\right]}{\mathbb{E}\left[\widetilde{B}_{ij}^2\right]}$$

Introduction	Linear filtering	Joint optimization $\circ \circ \bullet \circ$	Results	Conclusions
laint antir	nization: ston	0		

Step 2: optimizing localization and hybridization together

Introduction	Linear filtering	Joint optimization ○○●○	Results	Conclusions
laint antir	nization, stan	0		

Step 2: optimizing localization and hybridization together

Goal: to minimize the expected quadratic error $e^{h} = \mathbb{E} \big[\| \underbrace{\mathsf{L}^{h} \circ \widetilde{\mathsf{B}} + (\beta^{c})^{2} \overline{\mathsf{B}}}_{\mathsf{H}} - \underbrace{\widetilde{\mathsf{B}}^{\star}}_{\mathsf{H}} \big]$ $\|^{2}$ Localized / hybridized B Asymptotic B

Introduction	Linear filtering	Joint optimization ○○●○	Results	Conclusions
laint antir	nization, stan	0		

Step 2: optimizing localization and hybridization together

Goal: to minimize the expected quadratic error

$$e^{h} = \mathbb{E} \left[\| \underbrace{\mathsf{L}^{h} \circ \widetilde{\mathsf{B}} + (\beta^{c})^{2} \overline{\mathsf{B}}}_{\text{Localized / hybridized } \widetilde{\mathsf{B}}} - \underbrace{\widetilde{\mathsf{B}}^{\star}}_{\text{Asymptotic } \widetilde{\mathsf{B}}} \|^{2} \right]$$

Same assumptions as before.

Introduction	Linear filtering	Joint optimization ○○●○	Results	Conclusions
		0		

Step 2: optimizing localization and hybridization together

Goal: to minimize the expected quadratic error

$$e^{h} = \mathbb{E} \left[\| \underbrace{\mathsf{L}^{h} \circ \widetilde{\mathsf{B}} + (\beta^{c})^{2} \overline{\mathsf{B}}}_{\text{Localized / hybridized } \widetilde{\mathsf{B}}} - \underbrace{\widetilde{\mathsf{B}}^{\star}}_{\text{Asymptotic } \widetilde{\mathsf{B}}} \|^{2} \right]$$

Same assumptions as before.

Result of the minimization: a linear system in L^h and $(\beta^c)^2$

$$L_{ij}^{h} = L_{ij} - \frac{\mathbb{E}[\widetilde{B}_{ij}]}{\mathbb{E}[\widetilde{B}_{ij}^{2}]} \overline{B}_{ij} (\beta^{c})^{2}$$
(2a)
$$(\beta^{c})^{2} = \frac{\sum_{ij} \overline{B}_{ij} (1 - L_{ij}^{h}) \mathbb{E}[\widetilde{B}_{ij}]}{\sum_{ij} \overline{B}_{ij}^{2}}$$
(2b)

Introduction	Linear filtering	Joint optimization ∞∞⊙●	Results	Conclusions
Hybridization benefits				

Comparison of:

- $\widehat{\mathbf{B}} = \mathbf{L} \circ \widetilde{\mathbf{B}}$, with an optimal \mathbf{L} minimizing e
- $\widehat{\mathbf{B}}^h = \mathbf{L}^h \circ \widetilde{\mathbf{B}} + (\beta^c)^2 \ \overline{\mathbf{B}}$, with optimal \mathbf{L}^h and β^c minimizing e^h

Introduction	Linear filtering	Joint optimization ○○○●	Results	Conclusions
Hybridizatic	on benefits			

Comparison of:

- $\widehat{\mathbf{B}} = \mathbf{L} \circ \widetilde{\mathbf{B}}$, with an optimal \mathbf{L} minimizing e
- $\widehat{\mathbf{B}}^h = \mathbf{L}^h \circ \widetilde{\mathbf{B}} + (\beta^c)^2 \ \overline{\mathbf{B}}$, with optimal \mathbf{L}^h and β^c minimizing e^h

We can show that:

$$e^{h} - e = -(\beta^{c})^{2} \sum_{ij} \frac{\overline{B}_{ij}^{2} \operatorname{Var}(\widetilde{B}_{ij})}{\mathbb{E}[\widetilde{B}_{ij}^{2}]}$$
(3)

Introduction	Linear filtering	Joint optimization ○○○●	Results	Conclusions
Hybridizatio	on benefits			

Comparison of:

- $\widehat{\mathbf{B}} = \mathbf{L} \circ \widetilde{\mathbf{B}}$, with an optimal \mathbf{L} minimizing e
- $\widehat{\mathbf{B}}^h = \mathbf{L}^h \circ \widetilde{\mathbf{B}} + (\beta^c)^2 \ \overline{\mathbf{B}}$, with optimal \mathbf{L}^h and β^c minimizing e^h

We can show that:

$$e^{h} - e = -(\beta^{c})^{2} \sum_{ij} \frac{\overline{B}_{ij}^{2} \operatorname{Var}(\widetilde{B}_{ij})}{\mathbb{E}[\widetilde{B}_{ij}^{2}]}$$
(3)

With optimal parameters, whatever the static \overline{B} : Localization + hybridization is better than localization alone

Introduction	Linear filtering	Joint optimization	Results	Conclusions
Outline				

Introduction

Linear filtering of sample covariances

Joint optimization of localization and hybridization

Results

Conclusions

Introduction	Linear filtering	Joint optimization	Results ●○○	Conclusions
	1			

An ergodicity assumption is required to estimate the statistical expectations ${\mathbb E}$ in practice:

Introduction	Linear filtering	Joint optimization	Results ●○○	Conclusions
B				

An ergodicity assumption is required to estimate the statistical expectations $\mathbb E$ in practice:

- whole domain average,
- local average,
- scale dependent average,
- etc.

Introduction	Linear filtering	Joint optimization	Results ●○○	Conclusions
B				

An ergodicity assumption is required to estimate the statistical expectations ${\mathbb E}$ in practice:

- whole domain average,
- local average,
- scale dependent average,
- etc.
- \rightarrow This assumption is independent from earlier theory.

Introduction	Linear filtering	Joint optimization	Results ●○○	Conclusions

An ergodicity assumption is required to estimate the statistical expectations ${\mathbb E}$ in practice:

- whole domain average,
- local average,
- scale dependent average,
- etc.
- ightarrow This assumption is independent from earlier theory.

Localization L^h and hybridization coefficient β^c can be computed:

- from the ensemble at each assimilation window,
- climatologically from an archive of ensembles.

Introduction	Linear filtering	Joint optimization	Results ●○○	Conclusions

An ergodicity assumption is required to estimate the statistical expectations ${\mathbb E}$ in practice:

- whole domain average,
- local average,
- scale dependent average,
- etc.
- ightarrow This assumption is independent from earlier theory.

Localization L^h and hybridization coefficient β^c can be computed:

- from the ensemble at each assimilation window,
- climatologically from an archive of ensembles.

Introduction	Linear filtering	Joint optimization	Results ○●○	Conclusions
Experiment	tal setup			

• WRF-ARW model, large domain, 25 km-resolution, 40 levels

Introduction	Linear filtering oo	Joint optimization	Results ○●○	Conclusions
Experiment	al setup			

- WRF-ARW model, large domain, 25 km-resolution, 40 levels
- Initial conditions randomized from a homogeneous static ${\bf B}$

Introduction	Linear filtering	Joint optimization	Results ○●○	Conclusions
Experiment	al setup			

- WRF-ARW model, large domain, 25 km-resolution, 40 levels
- Initial conditions randomized from a homogeneous static ${\bf B}$
- Reference and test ensembles (1000 / 100 members)

Introduction	Linear filtering	Joint optimization	Results ○●○	Conclusions
Experiment	tal setup			

- WRF-ARW model, large domain, 25 km-resolution, 40 levels
- Initial conditions randomized from a homogeneous static B
- Reference and test ensembles (1000 / 100 members)
- Forecast ranges: 12, 24, 36 and 48 h

Introduction	Linear filtering	Joint optimization	Results ○●○	Conclusions
Experiment	al setup			

- WRF-ARW model, large domain, 25 km-resolution, 40 levels
- Initial conditions randomized from a homogeneous static B
- Reference and test ensembles (1000 / 100 members)
- Forecast ranges: 12, 24, 36 and 48 h

Temperature at level 7 (\sim 1 km above ground), 48 h-range forecasts

Standard-deviation (K)

Introduction	Linear filtering	Joint optimization	Results ○○●	Conclusions
Localization	and hybridiza	tion		

• Optimization of the horizontal localization L_{hor}^{h} and of the hybridization coefficient β^{c} at each vertical level.

	000	00	0000	00•	00
	000	00	0000	000	00

- Optimization of the horizontal localization L_{hor}^{h} and of the hybridization coefficient β^{c} at each vertical level.
- Static \overline{B} = horizontal average of \widetilde{B}

Introduction	Linear filtering	Joint optimization	Results ○○●	Conclusions

- Optimization of the horizontal localization L_{hor}^{h} and of the hybridization coefficient β^{c} at each vertical level.
- Static $\overline{\mathbf{B}}$ = horizontal average of $\widetilde{\mathbf{B}}$
- Localization length-scale:

Introduction	Linear filtering	Joint optimization	Results	Conclusions
000	00	0000	00●	00

- Optimization of the horizontal localization L_{hor}^{h} and of the hybridization coefficient β^{c} at each vertical level.
- Static \overline{B} = horizontal average of \widetilde{B}
- Hybridization coefficients for zonal wind:

Introduction	Linear filtering	Joint optimization	Results ○○●	Conclusions

- Optimization of the horizontal localization L_{hor}^{h} and of the hybridization coefficient β^{c} at each vertical level.
- Static \overline{B} = horizontal average of \widetilde{B}
- Impact of the hybridization:

Introduction	Linear filtering	Joint optimization	Results ○○●	Conclusions
		_		

- Optimization of the horizontal localization L_{hor}^{h} and of the hybridization coefficient β^{c} at each vertical level.
- Static $\overline{\mathbf{B}}$ = horizontal average of $\widetilde{\mathbf{B}}$
- Impact of the hybridization:
 - + \widetilde{B}^{\star} is estimated with the reference ensemble

Introduction	Linear filtering	Joint optimization	Results ○○●	Conclusions
_				

- Optimization of the horizontal localization L_{hor}^{h} and of the hybridization coefficient β^{c} at each vertical level.
- Static \overline{B} = horizontal average of \widetilde{B}
- Impact of the hybridization:
 - + \widetilde{B}^{\star} is estimated with the reference ensemble
 - Expected quadratic errors e and e^{h} are computed

Introduction	Linear filtering	Joint optimization	Results ○○●	Conclusions

- Optimization of the horizontal localization L_{hor}^{h} and of the hybridization coefficient β^{c} at each vertical level.
- Static $\overline{\mathbf{B}}$ = horizontal average of $\widetilde{\mathbf{B}}$
- Impact of the hybridization:
 - + \widetilde{B}^{\star} is estimated with the reference ensemble
 - Expected quadratic errors e and e^{h} are computed

Error reduction from e to e^{h} for 25 members

Zonal wind	Meridian wind	Temperature	Specific humidity
4.5 %	4.2 %	3.9 %	1.7 %

Introduction	Linear filtering	Joint optimization	Results	Conclusions
000	00	0000	00●	00

- Optimization of the horizontal localization L_{hor}^{h} and of the hybridization coefficient β^{c} at each vertical level.
- Static \overline{B} = horizontal average of \widetilde{B}
- Impact of the hybridization:
 - + \widetilde{B}^{\star} is estimated with the reference ensemble
 - Expected quadratic errors e and e^{h} are computed

Error reduction from e to e^{h} for 25 members

Zonal wind	Meridian wind	Temperature	Specific humidity
4.5 %	4.2 %	3.9 %	1.7 %

 \rightarrow Hybridization with $\overline{\mathbf{B}}$ improves the accuracy of the forecast error covariance matrix

Introduction	Linear filtering	Joint optimization	Results	Conclusions
Outline				

Introduction

Linear filtering of sample covariances

Joint optimization of localization and hybridization

Results

Conclusions

Introduction	Linear filtering	Joint optimization	Results	Conclusions ●○
Conclusions				

Introduction	Linear filtering	Joint optimization	Results	Conclusions ●○
Conclusions				

1. Localization and hybridization are **two joint aspects** of the linear filtering of sample covariances.

Introduction	Linear filtering	Joint optimization	Results	Conclusions ●○
Conclusions				

- 1. Localization and hybridization are **two joint aspects** of the linear filtering of sample covariances.
- 2. We have developed a **new objective method** to optimize localization and hybridization coefficients together:

Introduction	Linear filtering	Joint optimization	Results	Conclusions ●○
Conclusions				

- 1. Localization and hybridization are **two joint aspects** of the linear filtering of sample covariances.
- 2. We have developed a **new objective method** to optimize localization and hybridization coefficients together:
 - Based on properties of the ensemble only

Introduction	Linear filtering	Joint optimization	Results 000	Conclusions ●○
Conclusions				

- 1. Localization and hybridization are **two joint aspects** of the linear filtering of sample covariances.
- 2. We have developed a **new objective method** to optimize localization and hybridization coefficients together:
 - Based on properties of the ensemble only
 - Affordable for high-dimensional systems

Introduction	Linear filtering	Joint optimization	Results	Conclusions ●○
Conclusions				

- 1. Localization and hybridization are **two joint aspects** of the linear filtering of sample covariances.
- 2. We have developed a **new objective method** to optimize localization and hybridization coefficients together:
 - Based on properties of the ensemble only
 - Affordable for high-dimensional systems
 - Tackling the sampling noise issue only

Introduction	Linear filtering	Joint optimization	Results	Conclusions ●○
Conclusions				

- 1. Localization and hybridization are **two joint aspects** of the linear filtering of sample covariances.
- 2. We have developed a **new objective method** to optimize localization and hybridization coefficients together:
 - Based on properties of the ensemble only
 - Affordable for high-dimensional systems
 - Tackling the sampling noise issue only
- 3. If done optimally, hybridization **always improves** the accuracy of forecast error covariances.

Introduction	Linear filtering	Joint optimization	Results	Conclusions ●○
Conclusions				

- 1. Localization and hybridization are **two joint aspects** of the linear filtering of sample covariances.
- 2. We have developed a **new objective method** to optimize localization and hybridization coefficients together:
 - Based on properties of the ensemble only
 - Affordable for high-dimensional systems
 - Tackling the sampling noise issue only
- 3. If done optimally, hybridization **always improves** the accuracy of forecast error covariances.

Ménétrier, B. and T. Auligné: Optimized Localization and Hybridization to Filter Ensemble-Based Covariances *Monthly Weather Review*, **2015**, accepted

Introduction	Linear filtering	Joint optimization	Results	Conclusions ○●
Perspective	S			

Introduction	Linear filtering	Joint optimization	Results	Conclusions ○●
Perspective	S			

• Extension to vectorial hybridization weights:

 $\delta \mathbf{x} = \boldsymbol{\beta}^{e} \circ \delta \mathbf{x}^{e} + \boldsymbol{\beta}^{c} \circ \delta \mathbf{x}^{c}$

Introduction	Linear filtering	Joint optimization	Results	Conclusions ○●
Perspectives	5			

• Extension to vectorial hybridization weights:

$$\delta \mathbf{x} = \boldsymbol{\beta}^e \circ \delta \mathbf{x}^e + \boldsymbol{\beta}^c \circ \delta \mathbf{x}^c$$

 \rightarrow Requires the solution of a nonlinear system $\mathcal{A}(\mathbf{L}^{h}, \boldsymbol{\beta}^{c}) = 0$, performed by a bound-constrained minimization.

Introduction	Linear filtering	Joint optimization	Results	Conclusions ○●
Perspectives	5			

• Extension to vectorial hybridization weights:

$$\delta \mathbf{x} = \boldsymbol{\beta}^e \circ \delta \mathbf{x}^e + \boldsymbol{\beta}^c \circ \delta \mathbf{x}^c$$

- → Requires the solution of a nonlinear system $\mathcal{A}(\mathsf{L}^h, \beta^c) = 0$, performed by a bound-constrained minimization.
- Heterogeneous optimization: local averages over subdomains

Introduction	Linear filtering	Joint optimization	Results	Conclusions ○●
Perspectives	5			

• Extension to vectorial hybridization weights:

$$\delta \mathbf{x} = \boldsymbol{\beta}^e \circ \delta \mathbf{x}^e + \boldsymbol{\beta}^c \circ \delta \mathbf{x}^c$$

- → Requires the solution of a nonlinear system $\mathcal{A}(\mathsf{L}^h, \beta^c) = 0$, performed by a bound-constrained minimization.
- Heterogeneous optimization: local averages over subdomains
- 3D optimization: joint computation of horizontal and vertical localizations, and hybridization coefficients

Introduction	Linear filtering	Joint optimization	Results	Conclusions ○●
Perspectives	5			

• Extension to vectorial hybridization weights:

$$\delta \mathbf{x} = \boldsymbol{\beta}^e \circ \delta \mathbf{x}^e + \boldsymbol{\beta}^c \circ \delta \mathbf{x}^c$$

- → Requires the solution of a nonlinear system $\mathcal{A}(\mathsf{L}^h, \beta^c) = 0$, performed by a bound-constrained minimization.
- Heterogeneous optimization: local averages over subdomains
- 3D optimization: joint computation of horizontal and vertical localizations, and hybridization coefficients

To be done:

Introduction	Linear filtering	Joint optimization	Results	Conclusions ○●
Perspectives	5			

• Extension to vectorial hybridization weights:

$$\delta \mathbf{x} = \boldsymbol{\beta}^e \circ \delta \mathbf{x}^e + \boldsymbol{\beta}^c \circ \delta \mathbf{x}^c$$

- → Requires the solution of a nonlinear system $\mathcal{A}(\mathsf{L}^h, \beta^c) = 0$, performed by a bound-constrained minimization.
- Heterogeneous optimization: local averages over subdomains
- 3D optimization: joint computation of horizontal and vertical localizations, and hybridization coefficients

To be done:

• Tests in a cycled quasi-operational configuration

Introduction	Linear filtering	Joint optimization	Results	Conclusions ○●
Perspectives	5			

• Extension to vectorial hybridization weights:

$$\delta \mathbf{x} = \boldsymbol{\beta}^e \circ \delta \mathbf{x}^e + \boldsymbol{\beta}^c \circ \delta \mathbf{x}^c$$

- → Requires the solution of a nonlinear system $\mathcal{A}(\mathsf{L}^h, \beta^c) = 0$, performed by a bound-constrained minimization.
- Heterogeneous optimization: local averages over subdomains
- 3D optimization: joint computation of horizontal and vertical localizations, and hybridization coefficients
- To be done:
 - Tests in a cycled quasi-operational configuration
 - Extension of the theory to account for systematic errors in \widetilde{B}^{\star} (theory is ready, tests are underway...)

Thank you for your attention! Any question?