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Background and question

• singular vectors have been and are still being used as a
method to generate initial perturbations for ensemble
prediction (ECMWF, Météo-France, JMA)

• representing ensemble initial perturbations by distribution in
space of leading singular vectors involves a number of
approximations/assumptions
• replace true analysis error covariance matrix by simple estimate

(initial time metric)
• rank-reduction of the analysis error covariance matrix
• setting of the variance in the space of the singular vectors
• approximation of the non-linear model by a tangent-linear

model
• . . .

• how do these approximations/assumptions impact the ability
to make reliable predictions of the pdf of forecast errors?
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Outline

• Ensemble forecasts and reliability

• Singular vectors, linear/non-linear fc error covariance
predictions

• A diagnostic to assess reliability in the context of singular
vectors

• All uncertainties represented by initial SVs
• Rank-reduction, amplitude and reliability
• The tangent-linear approximation

• The operational configuration of the ECMWF ENS

• Summary

M Leutbecher and STK Lang SVs and reliability Roanoke, WV, 1–5 June 2015 3



Reliability and sharpness
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forecast distribution: observation: •

M Leutbecher and STK Lang SVs and reliability Roanoke, WV, 1–5 June 2015 4



Reliability and sharpness
reliable unreliable

broad

sharp

forecast distribution: observation: •

M Leutbecher and STK Lang SVs and reliability Roanoke, WV, 1–5 June 2015 4



Reliability and sharpness
reliable unreliable

broad

sharp

forecast distribution: observation: •

M Leutbecher and STK Lang SVs and reliability Roanoke, WV, 1–5 June 2015 4



Evolution of overall ENS reliability
Z500 N-Hem: ensemble stdev versus ens. mean rmse
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Linear model and low rank representation
of initial uncertainties
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Linear and nonlinear forecast error
covariance estimates

The linear estimate, as assumed in SV approach

MA′MT

The non-linear estimate as used in practice with ensembles (N
members)

(N − 1)−1
N∑

k=1

[
M(xk)−M(x.)

] [
M(xk)−M(x.)

]T
• the two estimates will differ unless nonlinear model M and

TL model M are identical

• focus on the nonlinear estimate (will return to linear estimate
later)
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Is ensemble variance in SV subspaces
matching actual error variances?

verification of forecast valid at t1 and initialized at t0 using SVs
that grow from t0 to t1.

0

x

SV subspace

• define operator P that projects on the subspace spanned by
the evolved SVs (valid at t1).

• x: error of ensemble mean or one of the perturbations about
ensemble mean

• compute variance of error and ensemble variance
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Is ensemble variance in SV subspaces
matching actual error variances?

verification of forecast valid at t1 and initialized at t0 using SVs
that grow from t0 to t1.
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Projection example
48-hour ens. mean error: 200–500 hPa meridional wind
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Projection example
48-hour perturbation member 2: 200–500 hPa meridional wind

full perturbation
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Variances in subspace S
Ensemble variances and mean squared errors computed with

‖x‖2 = xT E1x (1)

Compare ensemble variance in subspace Vens with mean squared
error of ensemble mean (“error variance”) Verr:

Vens
[
S
]

=

〈
1

M

M∑
k=1

∥∥PSLD (xk − x)
∥∥2

〉
(2)

Verr
[
S
]

=
〈∥∥PSLD (x− y)

∥∥2
〉

(3)

• M members xk , ens. mean x and analysis y

• subdomain D and localization operator LD

• subspace S and orthogonal projection PS into S

• sample mean 〈 〉
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Singular vectors

The initial SVs vj and singular values σjare solutions of

MTLTDE1LDMvj = σ2
j E0vj (4)

• M propagator from t0 to t1

• E0, E1 symm. pos. def. matrix; initial and final metric

• E−1
0 and ME−1

0 MT are the analysis error and forecast error
covariance matrices assumed in SV computation

Define subspace basis vectors and projections with evolved,
localized and normalized SVs:

wj = σ−1
j LDMvi which are the leading eigenvectors of (5)

C1 = E
1/2
1 LD ME−1

0 MT LTDE
1/2
1
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The projection operator
For a singular vector subspace

S(J ) = span {wj | j ∈ J }

the orthogonal projection of a vector x into S is given by

PS(J )x =
∑
j∈J

wj w
T
j E1x︸ ︷︷ ︸
≡αj (x)

The squared norm of the projection in S can be expressed as∥∥PS(J ) x
∥∥2

=
∑
j∈J

∑
k∈J

αj(x)αk(x)wT
j E1wk =

∑
j∈J

α2
j (x)

Variances are additive for mutually orthogonal subspaces

V
[
S1 + · · ·+ SK

]
=

K∑
j=1

V
[
Sj
]

V
[
full space

]
= V

[
S
]

+ V
[
orth. compl. of S

]
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Spaces

space notation

J = {1, 2, . . . , 10} SV1–10
J = {1, 2, . . . , 50} SV1–50
J = {96, 97, . . . , 100} SV96–100
J = {101, 102, . . . ,N} C(SV1–100)

orthogonal complement of SV1–100
N is the dimension of the SV state space.

For an isotropic distribution in the space of the initial SVs, the
ensemble variance in the direction of j-th SV scales as

Vens(SV j) ∝ σ2
j

if perturbations are evolved with the TL-model.
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Experiment setup
singular vectors

• TL159 singular vectors

• 48-hour opt. time; E0, E1 total energy

• moist processes represented in TL
• initial uncertainties represented by

• leading 25 SVs in each hemisphere (H25)
• leading 50 SVs in each hemisphere (H50)
• leading 100 SVs in each hemisphere (H100)

• leading 100 SVs in each hem. used for the diagnostics

Assumed reduced rank analysis error covariance matrices

va
ria

nc
e

eigenvalue number

spectrum of A' (in one hemisphere)

25 50 100

H25 H50 H100
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Experiment setup
ensemble forecasts

• TL639 ensembles (∆x = 32 km)

• 50 members

• 20 start dates

• only initial uncertainties represented with SVs

• singular vectors sample isotropic Gaussian distribution in
space spanned by initial singular vectors

• reliable variances can be obtained in a particular SV subspace
by adjusting variance of initial perturbations

• for 3 experiments H25, H50, H100 variance of init. pertns. is
set so that error variance matches ensemble variance in space
SV1–25.
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Variance “spectra”
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dark grey: variance of nonlinear ens. perturbations projected into SV spaces
light grey: RMS of ensemble mean error projected into SV spaces
bars: 95% confidence interval of difference of ens. and err. variances
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Different ranks of the assumed analysis
error covariance
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Orthogonal complement subspaces
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NH (20◦N–90◦N) spread and RMSE
500 hPa geopotential
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Scaling of analysis error standard deviation

• In past, the amplitude of the singular vector initial
perturbations used to be adjusted so that the domain
averaged ensemble variance matches the mean squared error
(e.g. for Z500 in the extratropics).

• What are the implications? → additional experiments H25+
and H50+ with inflated initial perturbation amplitude

• The standard deviation of the initial singular vector
perturbations is proportional to a scaling parameter γ

Exp. NSV γNH γSH
H25 25 0.0048 0.0051
H25+ 25 0.0095 0.0092
H50 50 0.0048 0.0051
H50+ 50 0.0091 0.0089
H100 100 0.0048 0.0051
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Increased analysis error variances
500 hPa geopotential

Northern extra-tropics (20◦N–90◦N)
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Increased analysis error variances
500 hPa geopotential

Southern extra-tropics (20◦S–90◦S)
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Forecast error variances
in experiments with increased analysis error variances
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Local spread-reliability
reliable in SV1–25 overdispersive in SV1–25
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• ensemble mean error stratified by ensemble standard deviation in bins
with similar spread

• 500 hPa geopotential (m2s−2)

• 48-hour lead time

M Leutbecher and STK Lang SVs and reliability Roanoke, WV, 1–5 June 2015 23



Two different SV configurations

• SV159: TL159 resolution, moist physics included

• SV42: T42 resolution, dry physics (vertical mixing only)

• Ensemble experiment H50 uses leading 50 SV159 SVs

• Ensemble experiment L50 uses leading 50 SV42 SVs

1 25 50 75 100
Singular Vector Index
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SV42 NH

SV42 SH

SV159 NH
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Linearisation errors

• RMS of linearisation error in subspace of SV42 SVs (1st row)
and in subspace of SV159 SVs (2nd row)

• evaluated for finite amplitude perturbations of experiments
L50 (1st column) and H50 (2nd column)

• quantified with E1 norm ‖ . ‖
• normalized by RMS of linearly evolved initial perturbations

Ensemble
subspace L50 H50

SV42 0.48 2.34
SV159 0.40 0.44

M Leutbecher and STK Lang SVs and reliability Roanoke, WV, 1–5 June 2015 25



Linear (left/blue) versus nonlinear
(middle) forecast error variance prediction
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• Exp. H100

• Variances in subspaces of
SV159
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Linear (left/blue) versus nonlinear
(middle) forecast error variance prediction
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• Exp. L50

• Variances in subspaces of
SV42
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Improved reliability through use of a more
accurate TL approximation?

Compare variances in subspaces of SV159 for experiments with
initial perturbations based on

• SV42 (L50)

• SV159 (H50 and H100)
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Variances in subspaces of SV159

H50 (SV159 init. pertns.) L50 (SV42 init. pertns.)
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Variances in subspaces of SV159
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The operational ECMWF ensemble

The full representation of uncertainties consists of

• SVs (T42 dry TL-model)

• EDA (TL399)

• representations of model uncertainties (SPPT, SKEB)

What happens to reliability of variances in SV subspaces if one
suppresses SV initial perturbations in ensemble (FULL → NoSVs)?

Is there significant variance generated in the subspace of the
leading SVs by the EDA initial perturbations and the
representations of model uncertainties?
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Impact of omitting singular vectors
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Potential merit of modifying the SV
configuration in the operational ENS

• T42 dry TL model −→ TL95 moist TL model

• 50 −→ 150 leading SVs

initial evaluation

• A case study: US East Coast snow storm 27 January 2015

• Variances in SV subspaces (consistently evolved with same TL
model: TL255 moist)
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US East Coast blizzard
27/28 January 2015

• worst affected areas were in
a band from Long Island
towards Boston and further
north

• storm was expected to also
hit New Jersey and New
York City and strong actions
were taken before the event

• NYC only got a little snow

• ECMWF model gave strong
indication for severe snow
over NYC

Acknowledgments: Linus Magnusson
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Vertically integrated total energy of
evolved SVs
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Change in ensemble spread (Z500)
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Probability of precipitation
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Variances in SV subspaces
subspaces defined with

←− TL95 moist singular vectors −→ ← T42 dry singular vectors→

initial
pertns.

T42 dry SVs TL95 moist SVs T42 dry SVs TL95 moist SVs

• for diagnostic, all subspaces evolved with moist TL255 TL model

• 35 cases in boreal winter

• dark grey: ensemble variance, light grey: error variance
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Summary: rank reduction, amplitude

• An isotropic Gaussian distribution in the space of the leading
singular vectors can
• reliable represent forecast errors in the space spanned by the

SVs used for the representation of initial uncertainties
• not reliable represent forecast errors in the orthogonal

complement of this space

• Inflating the singular vector perturbations in order reach
reliable variances in full space leads to
• pronounced overdispersion in space of leading SVs, i.e. lack of

reliability
• still not enough spread in the orthogonal complement

• Having used an initial time metric based on a simple
approximation of the analysis error covariance matrix (total
energy) did not hamper the reliability
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Summary TL approximation

• Tangent-linear prediction of forecast error variances predicts
systematically larger variances in subspaces of leading SVs
than non-linear model
• Reliable variance prediction with nonlinear model ⇒

overdispersion with TL prediction
• TL approximation errors lead to significant amount of variance

leaking into orthogonal complement of leading SV subspace
(may be beneficial for ensemble prediction)

• Initial perturbations based on SVs computed with less
accurate TL model can generate about the right amount of
overall variance in subspaces of SVs computed with a more
accurate TL model (The two sets are not orthogonal.)

• However, SV159 SVs show more consistent reliability across
spectrum of SVs while SV42 SVs exhibit overdispersion for
leading 5–10 SVs while reliable for slower growing SVs
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Summary operational EPS configuration

• EDA initial perturbations and the model error representation
generate a significant amount of ensemble spread in the space
spanned by the leading 50 T42 extra-tropical SVs

• SVs are still justified to boost spread to the right level in
subspace of leading SVs

• The diagnostic based on SVs can be used to decide when SV
initial perturbations are inadequate

• Improving the operational ENS configuration may be possible
through
• further reduction in amplitude of SV perturbations
• increasing the number of SVs used to define the initial

perturbations
• use of a more accurate TL approximation

see also Leutbecher and Lang (2014, QJ)
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Discussion

As usual, more open questions than answers.

How would conclusions be affected by

• bias: RMS error versus error variance

• analysis uncertainties

• domain size and number of SVs required to explain certain
fraction of fc error variance

• initial time metric (proxy for A−1)
• flow-dependent variations
• fraction of fc error variance

• optimisation time
• steepness of singular value spectrum
• accuracy of TL approximation

• link to ensemble covariance EOF-based diagnostics
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Local spread reliability again
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Using diagnostics for subspaces computed
with different SV configurations

SV159 spaces SV42 spaces
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Experiment L50: Analysis error representation with SV42 SVs for both
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