Quantifying Dynamical Inconsistencies in Convective Ensemble Data Assimilation

Heiner Lange, George C. Craig, Tijana Janjić

Hans-Ertel-Centre for Weather Research, Data Assimilation Branch LMU Munich

Workshop on Meteorological Sensitivity Analysis and Data Assimilation, Roanoke, WV, 4.6.2015

イロト イボト イヨト イヨト

Motivation

Problem

Spurious convection after Radar data assimilation of thunderstorms

イロト イヨト イヨト イヨト

Motivation

Problem

Spurious convection after Radar data assimilation of thunderstorms

Cause

Dynamically inconsistent DA analyses as initial states of forecasts

イロト イヨト イヨト イヨト

Motivation

Problem

Spurious convection after Radar data assimilation of thunderstorms

Cause

Dynamically inconsistent DA analyses as initial states of forecasts

Method

- Proper characterization and quantification of <u>spurious</u> <u>convection</u> (this talk)
- Development and testing of methods to increase "dynamical consistency" of analyses (future work)

イロト イポト イヨト イヨト

Outline

1 LETKF OSSEs with varying length scales

- Fine and Coarse Analysis Schemes
- Spurious Convection

2 Quantifying Dynamical Consistency

- Gravity Wave Noise
- Coldpool Coupling

Retrieval of Perturbation Pressure (in abstract, but dropped)

(4月) トイヨト イヨト

OSSE Setup

- Perfect model experiment:
 - 2 km horizontal resolution, sounding with high CAPE and shear
 - 1 Nature Run, 50 Members

OSSE Setup

- Perfect model experiment:
 - 2 km horizontal resolution, sounding with high CAPE and shear
 - 1 Nature Run, 50 Members
- Long-lived (> 6h) mesoscale convective systems
 - randomly located in background ensemble
 - similarity of storms (shape, strength) due to identical sounding

イロト イポト イヨト イヨト

OSSE Setup

- Perfect model experiment:
 - 2 km horizontal resolution, sounding with high CAPE and shear
 - 1 Nature Run, 50 Members
- Long-lived (> 6h) mesoscale convective systems
 - randomly located in background ensemble
 - similarity of storms (shape, strength) due to identical sounding
- LETKF Data Assimilation
 - COSMO-KENDA System (German Weather Service)
 - Simulated observations of reflectivity and Doppler wind
 - 3 hour assimilation cycling
 - 3 hour ensemble forecast
 - Varying analysis scales to study scale dependent error growth

イロト イポト イヨト イヨト

Fine and Coarse Analysis Schemes

Multicell Storm Structure

Fine and Coarse Analysis Schemes Spurious Convection

Multicell Storm Structure

Yang and Houze, 1996: <u>Multicell Squall-Line Structure as a</u> Manifestation of Verztically Trapped Gravity Waves, MWR, 123, 641.

イロト イポト イヨト イヨト

Э

Fine and Coarse Analysis Schemes Spurious Convection

Fine and Coarse Analysis Schemes

L8

- 8 km localization
- 2 km observations
- 5 minute cycling

L32SOCG20

- 32 km localization
- 8 km observations
- 20 minute cycling

Lange and Craig 2014: <u>The Impact of Data Assimilation Length Scales on</u> Analysis and Prediction of Convective Storms, MWR, 142, 3781-3808.

イロト イポト イヨト イヨト

Fine and Coarse Analysis Schemes Spurious Convection

First Forecast Hour: Spurious Storm Evolution

REFL MAX 20080730170000 + 00000000 Level sfc Mem FC 350 300 250 [km] Distance [150 187 100 Distance [km] MAX 20080730060000 + 00110000 Level sfc Nature 350 300 E 250' 9 200 R7 Distan 150 100 50 200 300 Distance [km] イロト イヨト イヨト イヨト

- Top: Member of **L8**
- Bottom: Nature

Fine and Coarse Analysis Schemes Spurious Convection

First Forecast Hour: Spurious Storm Evolution

REFL MAX 20080730170000 + 00000500 Level sfc Mem FC 350 300 250 250 200 200 150 , SB 100 Distance [km] MAX 20080730060000 + 00110500 Level sfc Nature 350 300 E 250' 35 8 200 1B7 Distance 150 25 100 50 150 200 250 300 Distance [km] イロト イヨト イヨト イヨト

- Top: Member of **L8**
- Bottom: Nature

Fine and Coarse Analysis Schemes Spurious Convection

First Forecast Hour: Spurious Storm Evolution

- Top: Member of **L8**
- Bottom: Nature

Fine and Coarse Analysis Schemes Spurious Convection

First Forecast Hour: Spurious Storm Evolution

REFL MAX 20080730170000 + 00001500 Level sfc Mem FC 350 300 250 [w] 200 200 15f R7 100 Distance [km] MAX 20080730060000 + 00111500 Level sfc Nature 350 300 E 250' 35 8 200 R7 150 25 100 50 150 200 250 300 Distance [km] イロト イヨト イヨト イヨト

- Top: Member of L8
- Bottom: Nature

Fine and Coarse Analysis Schemes Spurious Convection

First Forecast Hour: Spurious Storm Evolution

REFL MAX 20080730170000 + 00002000 Level sfc Mem FC 350 300 E 250' Distance Distance 1B7 Distance [km] MAX 20080730060000 + 00112000 Level sfc Nature 350 300 E 250' Distance R7 25 100 50 150 200 250 300 Distance [km] イロト イヨト イヨト イヨト

- Top: Member of **L8**
- Bottom: Nature

Fine and Coarse Analysis Schemes Spurious Convection

First Forecast Hour: Spurious Storm Evolution

REFL MAX 20080730170000 + 00002500 Level sfc Mem FC 350 300 250 [w] 200 200 150 1B7 10 Distance [km] L MAX 20080730060000 + 00112500 Level sfc Nature 350 300 E 250' Distance 150 R7 25 100 50 100 150 200 250 300 Distance [km] イロト イヨト イヨト イヨト

- Top: Member of L8
- Bottom: Nature

Fine and Coarse Analysis Schemes Spurious Convection

First Forecast Hour: Spurious Storm Evolution

- Top: Member of L8
- Bottom: Nature

Fine and Coarse Analysis Schemes Spurious Convection

First Forecast Hour: Spurious Storm Evolution

REFL MAX 20080730170000 + 00003500 Level sfc Mem FC 350 300 250 200 200 150 , SB 100 Distance [km] REFL MAX 20080730060000 + 00113500 Level sfc Nature 350 300 E 250' 8 200 1B7 Distance Dis 25 100 50 100 200 250 300 Distance [km] イロト イヨト イヨト イヨト

- \bullet Top: Member of ${\bf L8}$
- Bottom: Nature

Fine and Coarse Analysis Schemes Spurious Convection

First Forecast Hour: Spurious Storm Evolution

- Top: Member of L8
- Bottom: Nature

Fine and Coarse Analysis Schemes Spurious Convection

First Forecast Hour: Spurious Storm Evolution

- Top: Member of L8
- Bottom: Nature

Fine and Coarse Analysis Schemes Spurious Convection

First Forecast Hour: Spurious Storm Evolution

REFL MAX 20080730170000 + 00005000 Level sfc Mem FC 350 300 250 200 200 150 , SB 25 100 Distance [km] REFL MAX 20080730060000 + 00115000 Level sfc Nature 350 300 250 200 200 150 35 **18**Z 100 50 100 150 200 250 300 350 Distance [km] イロト イヨト イヨト イヨト

- Top: Member of **L8**
- Bottom: Nature

Fine and Coarse Analysis Schemes Spurious Convection

First Forecast Hour: Spurious Storm Evolution

REFL MAX 20080730170000 + 00005500 Level sfc Mem FC 350 300 250 200 200 150 **18**Z 25 100 Distance [km] REFL MAX 20080730060000 + 00115500 .evel sfc Nature 350 300 250 200 200 150 35 **18**Z 100 50 150 200 250 300 350 Distance [km] イロト イヨト イヨト イヨト

- Top: Member of L8
- Bottom: Nature

Fine and Coarse Analysis Schemes Spurious Convection

First Forecast Hour: Spurious Storm Evolution

- Top: Member of L8
- Bottom: Nature

Spurious convection with other people

Aksoy et al, 2010: <u>A Multicase Comparative Assessment of the Ensemble</u> Kalman Filter for Assimilation of Radar Observations. Part II: Short-Range Ensemble Forecasts, MWR, 138, 1273.

Fine and Coarse Analysis Schemes Spurious Convection

1h Forecasts in L32

Less spurious convection in L32 \rightarrow more "dynamical consistency"?

イロト イヨト イヨト イヨト

Outline

1 LETKF OSSEs with varying length scales

- Fine and Coarse Analysis Schemes
- Spurious Convection

Quantifying Dynamical Consistency

- Gravity Wave Noise
- Coldpool Coupling

Gravity Wave Noise Coldpool Coupling

Gravity Wave Noise (last analysis)

・ロト ・回ト ・ヨト ・ヨト

Gravity Wave Noise Coldpool Coupling

Gravity Wave Noise (last analysis)

・ロト ・回ト ・ヨト ・ヨト

Gravity Wave Noise Coldpool Coupling

Gravity Wave Noise (last analysis)

L8 Member

・ロト ・回ト ・ヨト ・ヨト

Gravity Wave Noise Coldpool Coupling

Surface Pressure Tendencies

・ロト ・回ト ・ヨト ・ヨト

Gravity Wave Noise Coldpool Coupling

Surface Pressure Tendencies Results

Surface pressure tendencies

- larger in L8, especially at first analysis
- incomplete relaxation within the cycling (L8 and L32)
- only bulk indication for "dynamical consistency"

< ロ > < 同 > < 三 > < 三 >

Gravity Wave Noise Coldpool Coupling

Vertical Acceleration Histograms

イロト イヨト イヨト イヨト

Gravity Wave Noise Coldpool Coupling

Coldpool Coupling

Cold Pool Coupling

Question

"How closely is the <u>future convection coupled</u> to the <u>present cold</u> pool edges?""

イロト イヨト イヨト イヨト

Cold Pool Coupling

Question

"How closely is the <u>future convection coupled</u> to the <u>present cold</u> pool edges?""

Method

Compute the spatio-temporal correlation $C(\vec{x}, t)$:

- $C(\vec{x},t)$ of field $|\vec{\nabla}T(\vec{x},t_0)|$ with field dCond/dt (\vec{x},t)
- moving frame of reference: $|\vec{\nabla} T(\vec{x}, t_0)|$ shifted with storm propagation vector
- regard correlation parallell to storm movement

イロン 不同 とくほど 不同 とう

Gravity Wave Noise Coldpool Coupling

Cold Pool Coupling: 1 hour Ensemble Forecasts

Correlation of Temperature-Gradient to Condensation Rate

Top to bottom:

- Nature
- L8
- L32

Left: behind storm Right: ahead of storm

・ロト ・回ト ・ヨト ・ヨト

Cold Pool Coupling Results

Measure for "dynamical inconsistency":

New storms uncoupled to cold pool edges and their gust fronts.

Spurious convection in L8:

- $\bullet\,$ triggering of long lived spurious cells immediately (< 5 min) after initialization
- mostly ahead of "true" storms
- no trace of hypothetical perturbations that "radiate" from true storms
- apperently caused by precursor cells:
 - shallow convergence patterns without rain
 - below observation threshold
 - \rightarrow not fully suppressed during cycling

イロト イヨト イヨト イヨト

Gravity Wave Noise Coldpool Coupling

Impact on Cold Pool Coupling: Perturbed Nature Run

Nature Run instantaneously perturbed with layerwise perturbations of background ensemble

Top to bottom:

- Nature
- Nature + Perturbed T
- Nature + Perturbed U, V, W, PP

ヘロト ヘヨト ヘヨト

Left: behind storm Right: ahead of storm

Outlook: Assimilation Plans

Outlook:

Influence of EnKF-DA relaxation methods on spurious convections

- Vary localization (vertically, horizontally) and observation resolution
- Give observations less weight (inflated observation error covariance, RTPP)
- Spatial smoothing of increments
- Relating spatio-temporal parameters to GW phase speed
- Assimilate wind-only
- Gaussian anamorphosis of reflectivity observations

イロト イポト イヨト イヨト

Summary and open questions

Statement:

Spurious convection: An embarassment for convective scale DA.

イロト イヨト イヨト イヨト

Summary and open questions

Statement:

Spurious convection: An embarassment for convective scale DA.

Unknown:

Present OSSE setup: Sensible or chasing its own errors?

・ 同 ト ・ ヨ ト ・ ヨ ト

Summary and open questions

Statement:

Spurious convection: An embarassment for convective scale DA.

Done so far:

Metrics for gravity wave noise and unbalanced storm dynamics

- Surface Pressure Tendencies
- Coldpool Coupling

Unknown:

Present OSSE setup: Sensible or chasing its own errors?

・ 同 ト ・ ヨ ト ・ ヨ ト

Summary and open questions

Statement:

Spurious convection: An embarassment for convective scale DA.

Done so far:

Metrics for gravity wave noise and unbalanced storm dynamics

- Surface Pressure Tendencies
- Coldpool Coupling

Unknown:

Present OSSE setup: Sensible or chasing its own errors?

Need help with:

- Instantaneous measures for balanced states?
- Other possibilities, e.g. using ensemble sensitivities?

イロト イヨト イヨト イヨト

Surface Pressure Tendencies: Perturbed Nature Run

