

Hybrid 4D EnVar for the NCEP GFS: Implementation plans and potential for outer loops-comments on initialization

Daryl Kleist¹

Rahul Mahajan², Catherine Thomas^{1,2}, Deng-Shun Chen^{2,3}

¹Univ. of Maryland-College Park, Dept. of Atmos. & Oceanic Science ²NOAA/NCEP/Environmental Modeling Center ³Central Weather Bureau and National Central University

Workshop on Sensitivity Analysis and Data Assimilation (10th Adjoint Workshop) Roanoke, WV, 1-5 June 2015

The Hybrid EnVar cost function can be easily extended to 4D and include a static contribution

$$J(\mathbf{x}_{f}', \boldsymbol{\alpha}) = \beta_{f} \frac{1}{2} (\mathbf{x}_{f}')^{T} \mathbf{B}_{f}^{-1} (\mathbf{x}_{f}') + \beta_{e} \frac{1}{2} \sum_{n=1}^{N} (\boldsymbol{\alpha}^{n})^{T} \mathbf{L}^{-1} (\boldsymbol{\alpha}^{n}) + \frac{1}{2} \sum_{k=1}^{K} (\mathbf{H}_{k} \mathbf{x}_{k}' - \mathbf{y}_{k}')^{T} \mathbf{R}_{k}^{-1} (\mathbf{H}_{k} \mathbf{x}_{k}' - \mathbf{y}_{k}')$$

Where the 4D increment is prescribed through linear combinations of the 4D ensemble perturbations plus static contribution

$$\mathbf{x}'_{k} = \mathbf{x}'_{f} + \sum_{n=1}^{N} \left(\boldsymbol{\alpha}^{n} \circ \left(\mathbf{x}_{e} \right)_{k}^{n} \right)$$

Here, the static contribution is considered time-invariant (i.e. from 3DVAR-FGAT). Weighting parameters exist just as in the other hybrid variants. No need for tangent linear/adjoint models.

Trajectories of perturbations from ensemble mean Full model evolves mean of PDF Localised trajectories define 4D PDF of possible increments

4D analysis is a (localised) linear combination of nonlinear trajectories. It is not itself a trajectory.

Courtesy: Andrew Lorenc

Single Observation (-3h) Example From Kleist and Ide (2015)

GFS/GDAS Cycling Experiments with real observations

- Basic configuration
 - T670L64 Semi-Lagrangian GFS, operational observations, GFS/GDAS cycles
- Hybrid 3D EnVar
 - 80 member T254L46 ensemble with fully coupled (two-way) EnSRF update
 - Incremental normal mode initialization (TLNMC) on total increment
 - 87.5% ensemble & 12.5% static
 - Multiplicative inflation and stochastic physics for EnSRF perturbations

• Hybrid 4D EnVar

- As in 3D Experiment, but extended to 4D
- TLNMC on all time levels
- Hourly TC relocation, O-G, binning of observations (not 3-hourly)

3D v 4D hybrid in SL GFS 20130710-20130831

Northern Hemisphere Height RMSE and Difference

STIVERSITL

56

Southern Hemisphere Height RMSE and Difference

Hybrid Assimilation Trials

representative of many metrics/lead including tropical cyclone track * Not an apples to apples comparison

H 3DEnVar – 3DVAR

H 4DEnVar – H 3DEnVar

Trial run 3D Hybrid minus 3DVAR for various metrics using the T574/T254 Eulerian GFS configuration, Feb 1 through May 15 2012 [with additive inflation, old tuning]

Trial run 4D Hybrid minus 3D Hybrid [EnVar] for various metrics using the T670/T254 Semi-Lagrangian GFS configuration, December 5, 2013 through January 5, 2014 [stochastic physics, new tuning]

- Hybrid 4D EnVar to become operational for GFS/GDAS by January 2016 (tentative)
 - Basic package already frozen
 - Real time and retrospectives already underway

• Package Configuration

- T1534 deterministic GFS with 80 member T574L46 ensemble with fully coupled (two-way) EnKF update
- Incremental normal mode initialization (TLNMC) on total increment
- 87.5% ensemble & 12.5% static
- Multiplicative inflation and stochastic physics for EnKF perturbations
- Full field digital filter
- All-sky radiance assimilation
- Minor model changes

Full Resolution (T1534/T574) Trials: 500 hPa AC

500 hPa AC for the Operational GFS (Black, 3D Hybrid) and Test 4D configuration (Red) for the period covering 02-01-2015 through 04-29-2015.

Full Resolution (T1534/T574) Trials: Summary Scorecard (02-01 through 04-29 2015)

			N. American							N. Hemisphere						S. Hemisphere						Tropics					
ð	<u> </u>		Day 1	Day 3	Day 5	Day 6	Day 8	Day 10	Day 1	Day 3	Day 5	Day 6	Day 8	Day 10	Day 1	Day 3	Day 5	Day 6	Day 8	Day 10	Day 1	Day 3	Day 5	Day 6	Day 8	Day 10	
Anomaly Correlation	Heights	250hPa				285	8 - 20	8 NH 8					- 80							244	1 D.S.		- 22		\$ 10.2		
		500hPa]																						
		700hPa																			0						
		1000hPa																				••					
	Vector Wind	250hPa																			Î.						
		500hPa]												;	
		850hPa																			0.0						
	Temp	250hPa										*															
		500hPa																									
		850hPa																							0 - 10		
	MSLP	MSL		*																	0						
RMSE	Heights	10hPa		+										: <i>1</i> 7									V				
		20hPa	2	12. 22										: :::::::::::::::::::::::::::::::::::::											8. 10		
		50hPa														_											
		100hPa		i i			2			6								*						-			
		200hPa		*															Ì			- and the		A.			
		500hPa																			-						
		700hPa			*																+		, ,		8 10		
		850hPa																									
		1000hPa										140									Î.				Ì.		
	Vector Wind	10hPa						[]]]				*	l î								
		20hPa																	ļ		10						
		50hPa										*						*						*			
		100hPa												i i													
		200hPa																									
		500hPa																									
		700hPa										*															
		850hPa																									
		1000hPa																									
	Temp	10hPa					*	ļ ļ																			
		20hPa]]												+							
		50hPa	4															*					_				
		100hPa		*			3	e 3			6 10			: 3	*				3	-				;	8 6	-	
		200hPa										*									*						
		500hPa																									
		700hPa																									
		850hPa						10 13						: 6					*			*			2 10		
		1000hPa																									

- Natural extension to operational 3D EnVar
 - Thanks to Yannick Tremolet and efforts toward 4D capability in GSI
- Scalable
 - And can be improved even further
 - Aligns with technological/computing advances
- Stochastic Physics
 - Suitable replacement for additive inflation ("NMC perturbations")
- Computationally inexpensive relative to 4DVAR (with TL/AD)
 - Estimates of improved efficiency by 10x or more
 - Caveat: Still not better than hybrid 4DVAR

Potential Corrections for Noise and/or Imbalance

- Noise in the background (first guess/model forecast)
 - Full field digital filters ** (currently used in GFS)
 - Initialization (Nonlinear Normal Mode Initialization)
 - Analysis draws to data, Initialization pushes away from observations
- Noise in the analysis increment
 - Improved multivariate variable definition
 - Penalty terms
 - Incremental normal mode initialization
- Discrepancy in passing increment to model
 - Incremental analysis update

Constraint Options Explored in NCEP System

- Tangent Linear Normal Mode Constraint
 - Based on past experience and tests with 3D hybrid, default configuration includes TLNMC over all time levels (quite expensive)

$$\mathbf{x}'_{k} = \mathbf{C}_{k} \left[\mathbf{x}'_{f} + \sum_{n=1}^{N} \left(\boldsymbol{\alpha}^{n} \circ \left(\mathbf{x}_{e} \right)_{k}^{n} \right) \right]$$

- Weak Constraint "Digital Filter"
 - Construct filtered/initialized state as weighted sum of 4D states

$$J_{dfi} = \chi \left\langle \mathbf{x}_m - \mathbf{x}_m^i, \mathbf{x}_m - \mathbf{x}_m^i \right\rangle$$
$$\mathbf{x}_m^i = \sum_{k=1}^K \mathbf{h}_{k-m} \mathbf{x}_k^u$$

- Combination of the two
 - Apply TLNMC to center of assimilation window only in combination with JcDFI (Cost effective alternative?)

Tangent Linear Normal Mode Constraint Kleist et al. (2009)

$$J(\mathbf{x}_{c}') = \frac{1}{2} (\mathbf{x}_{c}')^{\mathrm{T}} \mathbf{C}^{-\mathrm{T}} \mathbf{B}^{-1} \mathbf{C}^{-1} (\mathbf{x}_{c}') + \frac{1}{2} (\mathbf{y}_{o}' - \mathbf{H} \mathbf{x}_{c}')^{\mathrm{T}} \mathbf{R}^{-1} (\mathbf{y}_{o}' - \mathbf{H} \mathbf{x}_{c}') + J_{c}$$
$$\mathbf{x}_{c}' = \mathbf{C} \mathbf{x}'$$

- analysis state vector after incremental NMI
 - C = Correction from incremental normal mode initialization (NMI)
 - represents correction to analysis increment that filters out the unwanted projection onto fast modes
- No change necessary for **B** in this formulation
- Based on:
 - Temperton, C., 1989: "Implicit Normal Mode Initialization for Spectral Models", MWR, vol 117, 436-451.

TLNMC Procedure C=[I-DFT]x'

- Practical Considerations:
 - C is operating on x' only, and is the tangent linear of NNMI operator
 - Only need one iteration in practice for good results
 - Adjoint of each procedure needed as part of minimization/variational procedure

Impact of TLNMC analysis

Zonal-average surface pressure tendency for background (green), unconstrained 3DVAR analysis (red), and 3DVAR analysis with TLNMC (purple). ¹⁷

Constraint impact (single case)

- Impact on tendencies
 - Dashed: Total tendencies
 - Solid: Gravity mode tendencies
 - All constraints reduce incremental tendencies

- Impact on ratio of gravity mode/ total tendencies
 - JcDFI increases ratio of gravity mode to total tendencies
 - TLNMC most effective (but most expensive)
 - Combined constraint potential (cost effective alternative)

Analysis Error Relative to Control for various options(cycled OSSE)

- From Joint OSSE (ECMWF T511 NR, Simulated Obs from Nikki)
- Control (zero) is 4D hybrid without constraint/initialization
- 6 week trial
- Time mean (August) change in analysis error (total energy) *relative* to 4D hybrid EnVar experiment that utilized no constraints at all
 - TLNMC universally better
 - Combined constraint mixed
 - JcDFI increases analysis error

- Incremental Analysis Update (Bloom, 1996) helps by using model to distribute a (single) increment over a time window with constant weights (we call this 3DIAU).
 - Propagation of increment neglected, might be significant for fast-moving weather systems.
 - May help spin up unobserved/non-updated state variables
- 4D version of IAU has been proposed by UK Met Office
 - Positive Impact in UKMO and Canadian 4D EnVar
- Approximation of "mollified" time-continuous formulation EnKF proposed by Bergemann & Reich (2010).

Preliminary Low Res. Results Courtesy: Rahul Mahajan

RMSE O-F (2013071000-2013081218)

IAU Impact on 1000 hPa heights relative to DFI

4DIAU - DF

(dam)

0.50 0.38 0.25

0.12 0.00

-0.12 -0.25 -0.38

-0.50

(dam)

1.59 1.19 0.79

0.39

0.00

-0.39 -0.79

-1.19

-1.59

(dam)

1.59 1.19

0.79 0.39

0.00

-0.39 -0.79

-1.19 -1.59

Ω

GFS 4D Hybrid IAU-DFI at 00 UTC

Buehner et al. (2015)

120E

60E

Ω

120W

180

60W

What Next?

- 4D IAU likely replacement for DFI
- TLNMC needs work (or replacement)
 - Tropics degraded

• Can we get 4D EnVar to beat hybrid 4DVAR?

- Future work on 4D EnVar DA at NCEP/UMD:
 - Scale-dependent weighting (visitor Deng-shun Chen)
 - Localization: Wave-band/scale-dependent
 - Incorporate ensemble update into GSI (EVIL, d-EVIL, mean-pert)
 - Nonlinearity, *outer loops*, variable choices
 - What to do about static (time-invariant) static error covariance
 - Low order modeling
 - FOTO