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DA: from large- to convective-scale

High-resolution (convective-scale) NWP models are becoming the norm

I more dynamical processes such as convection, cloud formation, and
small-scale gravity waves, are resolved explicitly

DA techniques need to evolve in order to keep up with the developments
in high-resolution NWP

I breakdown of dynamical balances (e.g., hydrostatic and
semi/quasi-gestrophic) at smaller scales

I strongly nonlinear processes associated with convection and
moisture/precipitation

I move towards ensemble-based methods
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Using idealised models

It may be unfeasible, and indeed undesirable, to investigate the potential
of DA schemes on state-of-the-art NWP models. Instead idealised models
can be employed that:

I capture some fundamental processes

I are computationally inexpensive to implement

I allow an extensive investigation of a forecast/assimilation system in
a controlled environment

‘Toy’ models:

I Lorenz (L63, L95, L2005, ... )

I BV/QG models (Bokhove et al., poster this workshop)

I simplified NWP models
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Using idealised models: approach

1. Describe a physically plausible idealised model and implement
numerically.

I based on the shallow water equations (SWEs).
I compare dynamics of the modified model to those of the classical

shallow water theory

2. Ensemble-based DA - relevant for convective-scale NWP?
I initial perturbations to represent forecast error
I “tuning” the observing system and the observational influence

diagnostic

3. Current/future work and ideas.
I DA: a comparison with VAR
I advanced numerics: non-negativity of ‘rain’
I other fluid dynamical models
I which characteristics of NWP can we seek to replicate in idealised

models?
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1. SWEs: an extension

Aim: modify the SWEs to include more complex dynamics relevant for the
‘convective-scale’, extending the model employed by Würsch and Craig (2014).

I convective updrafts - artificially mimic conditional instability (positive buoyancy)

I idealised representation of precipitation, including source and sink.

I contain switches for the onset of convection and precipitation - realistic (and
highly nonlinear) features of operational NWP models.

2D rotating SWEs on an f -plane with no variation

in the y-direction (∂y = 0):

∂th+ ∂x(hu) = 0,

∂t(hu) + ∂x(hu
2 + p(h))− fhv = −gh∂xb,

∂t(hv) + ∂x(huv) + fhu = 0,

∂tb = 0,

where p(h) is an effective pressure: p(h) = 1
2
gh2.
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Modified SWEs

Ingredients:

I two threshold heights Hc < Hr: when fluid exceeds these heights, different
mechanisms kick in and alter the classical SW dynamics.

I modifications to the effective pressure gradient (equivalently, geopotential
gradient) in the momentum equation.

I extra equation for the conservation of model ‘rain’ to close the system.

∂th+ ∂x(hu) = 0,

∂t(hu) + ∂x(hu
2 + p(h)) + hc20∂xr − fhv = −gh∂xb,

∂t(hv) + ∂x(huv) + fhu = 0,

∂t(hr) + ∂x(hur) + hβ̃∂xu+ αhr = 0,

∂tb = 0,

where p(h) =

{
1
2
gH2

c , for h+ b > Hc,
1
2
gh2, otherwise,

and β̃ =

{
β, for h+ b > Hr, ∂xu < 0,

0, otherwise.
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Some theoretical aspects

I Shallow water systems are hyperbolic, and can thus be solved via a range of
numerical recipes for hyperbolic syststems. What about the modified system?

I Vector formulation:

∂tU + ∂xF(U) + G(U)∂xU + S(U) = 0

I Hyperbolicity determined by eigenstructure (all eigenvalues must be real).
Eigenvalues of the system are determined by the matrix:

∂F/∂U + G(U) =


0 1 0 0 0

−u2 − c20r + ∂hp 2u c20 0 gh

−u(β̃ + r) β̃ + r u 0 0
−uv v 0 u 0
0 0 0 0 0

 .

I This matrix has five eigenvalues:

λ1,2 = u±
√
∂hp+ c20β̃, λ3,4 = u, and λ5 = 0,

I Since p(h) is non-decreasing and β̃ non-negative, the eigenvalues are real.
Hence, the modified SW model is hyperbolic.
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Numerics

Scheme:

I large literature on numerical routines for hyperbolic systems of PDEs.

I Rhebergen et al. (2008) developed a novel discontinuous Galerkin (DG) finite
element framework for hyperbolic system of PDEs with non-conservative
products G(U)∂xU.

I in most simple case (DG0), analagous to Godunov’s FV scheme in which a
numerical flux must be evaluated

d

dt
Uk +

1

4xk

[
PNC(Uk,Uk+1)− PNC(Uk−1,Uk)

]
+

S(Uk)

4xk
= 0.

Experiments:

I Rossby geostrophic adjustment in a periodic domain

I describes the evolution of the free surface height h when disturbed from its rest
state by a transverse jet, i.e., fluid with an initial constant height profile is
subject to a localised v-velocity distribution.

I non-dimensional parameters: Ro = 1 and Fr = 2.
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Adjustment of a transverse jet in RSW

Below Hc and Hr:
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Above Hc but below Hr:
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2. Ensemble-based DA for idealised models

Ensemble Kalman filter: twin model setting

I Imperfect model:
I “truth” trajectory: run at high resolution
I “forecast” model: run at lower resolution at which small-scale

features (e.g., localised moisture transport) are not fully resolved
I ensemble (covariance) inflation (xf

i ← γ(xf
i − xf ) + xf ) applied to

account for the model error due to resolution mismatch
I localisation (Pf ← ρloc ◦Pf ) applied to damp spurious long-range

correlations

I “tuning” the observing system: what to observe? how often? with
how much noise?

I observational influence diagnostic (after Cardinali et al. (2004))
averaged over cycles:

OI =
tr(HK)

p
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Before assimilating...: ensemble spread as a representation of forecast error
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Cycled assimilation...: how does an analysis look?
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Forecast Analysis
h 0.0731 0.0725
hu 0.1052 0.0812
hv 0.1374 0.0696
hr 0.0169 0.0238

Observational influence diagnostic:

OI =
tr(HK)

p
= 0.28
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tr(HK)

p
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Lots of parameters and different set-ups to explore and play with:

I observe only one variable (e.g., the height field) and compare; or
observe nonlinearly (e.g., radial wind)

I include topography and observe downstream of a mountain

I increase the ratio of truth to forecast resolution to observe
smaller-scale features

I (too) many more possibilities...
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3. Current/future work and ideas

DA:

I setting up a demonstration system that compares EnKF with VAR in which B
matrix is derived from ensemble.

Numerics:

I extension to ensure non-negativity of hr, à la Audusse et al., 2004.

PNC(Uk,Uk+1) −→ PNC(U(k+1/2)−,U(k+1/2)+)

I reconstructed states U(k+1/2)± impose that h and hr cannot become negative

yet dry states hr = 0 can be computed (given a derived time-step criterion).

Other models of interest:

I (dimensionally-reduced) adapted moist Boussinesq shallow water equations
(after Zerroukat and Allen, 2015)

I 3D QG model with anisotropic rotating convection (Bokhove et al., poster)

Tom Kent University of Leeds

Modified SW model for DA



3. Current/future work and ideas

Other diagnostics and the question of ‘relevance’:

I how can findings based on ‘toy’ models generalise to and provide useful insight
for operational NWP forecast/assimilation systems?

I observational influence diagnostic:
I global NWP: 0.15 (Cardinali et al., 2004)
I convective-scale NWP: 0.2 - 0.5? (Brousseau et al., 2014)

I error-growth properties of the idealised model should be similar to those in

operational models:
I error-growth characteristics of assimilating model determine magnitude and

structure of the updated Pf represented by the ensemble.
I error-doubling time for forecast error for global NWP known to be on the

order of days - what about convective-scale?
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Summary and outlook

I novel fluid dynamical models to fill the ‘complexity gap’ between
ODE models and the primitive equations / state-of-the-art NWP
models

I Idealised convective-scale DA experiments with characteristics
relevant for NWP

I Implement a variational algorithm (in which initial covariance comes
from the ensemble)

I Integrate model(s) into Met Office’s nascent ‘VarPy’ framework as a
repository for idealised DA experiments
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Thank you very much for your attention.
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