Numerical solution for a time-parallelized formulation of 4DVAR

M. Fisher ${ }^{1}$, S. Gratton ${ }^{2,3}$, S. Gürol ${ }^{3}$
${ }^{1}$ ECMWF, Reading, UK
${ }^{2}$ ENSEEIHT, Toulouse, France
${ }^{3}$ CERFACS, Toulouse, France

Workshop on Meteorological Sensitivity Analysis and Data Assimilation
Roanoke, West Virginia

2 June 2015

Outline

- Saddle point approach of 4D-Var
- Preconditioning of saddle point formulation
- Numerical results
- Conclusions

Why saddle-point formulation?

- 4D-Var is a sequential algorithm.
\rightarrow Tangent Linear and Adjoint integrations run one after the other.
\rightarrow Model timesteps follow each other.
- Parallelization of 4D-Var in the spatial domain has been performed by a spatial decomposition, and distribution over processors of the model grid.
\rightarrow The number of grid points (associated with each processor) are independent of the resolution of the model.
- BUT, increasing the resolution of the model, increases the work per processor since higher resolutions require shorter timesteps.
- In order to keep the work per processor constant, parallelization in the time dimension is required.
M. Fisher shows that saddle-point formulation allows parallelization in the time dimension.

Weak-constraint 4D-Var

$$
\min _{x \in \mathbb{R}^{n}} \frac{1}{2}\left\|x_{0}-x_{b}\right\|_{\mathbf{B}^{-1}}^{2}+\frac{1}{2} \sum_{j=0}^{N}\left\|\mathcal{H}_{j}\left(x_{j}\right)-y_{j}\right\|_{\mathbf{R}_{j}^{-1}}^{2}+\frac{1}{2} \sum_{j=1}^{N}\|\underbrace{\| x_{j}-\mathcal{M}_{j}\left(x_{j-1}\right)}_{q_{j}}\|_{\mathbf{Q}_{j}^{-1}}^{2}
$$

$\boldsymbol{x}=\left(\begin{array}{c}x_{0} \\ x_{1} \\ \vdots \\ x_{N}\end{array}\right) \in \mathbb{R}^{n}$ is the control variable where $x_{j}=x\left(t_{j}\right)$ defined at the start of each of a set of sub-windows that span the analysis window.

- x_{b} is the background given at the initial time $\left(t_{0}\right)$.
- $y_{j} \in \mathbb{R}^{m_{j}}$ is the observation vector over a given time interval
- \mathcal{H}_{j} maps the state vector x_{j} from model space to observation space
- \mathcal{M}_{j} represents an integration of the numerical model from time t_{j-1} to t_{j}
- $\mathbf{B}, \mathbf{R}_{j}$ and \mathbf{Q}_{j} are the covariance matrices of background, observation and model error.

Formulation

- Let us consider the linearized subproblem of the weak-constraint 4D-Var as a constrained problem and write its Lagrangian function. Then the stationary point of \mathcal{L} satisfies the system of equations that can be written in a matrix form as:

$$
\left(\begin{array}{ccc}
\mathbf{D} & \mathbf{0} & \mathbf{L} \\
\mathbf{0} & \mathbf{R} & \mathbf{H} \\
\mathbf{L}^{\mathrm{T}} & \mathbf{H}^{\mathrm{T}} & \mathbf{0}
\end{array}\right)\left(\begin{array}{c}
\boldsymbol{\lambda} \\
\boldsymbol{\mu} \\
\boldsymbol{\delta} \mathbf{x}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{b} \\
\mathbf{d} \\
\mathbf{0}
\end{array}\right)
$$

- This system is called the saddle-point formulation of 4D-Var.
- $\mathbf{L}=\left(\begin{array}{ccccc}I & & & & \\ -M_{1} & I & & & \\ & -M_{2} & I & & \\ & & \ddots & \ddots & \\ & & & -M_{N} & I\end{array}\right)$ is an n-by-n matrix.
- $\mathbf{H}=\operatorname{diag}\left(\mathbf{H}_{\mathbf{0}}, \mathbf{H}_{\mathbf{1}}, \ldots, \mathbf{H}_{\mathbf{N}}\right)$ is an n -by-m matrix.
- $\mathbf{D}=\operatorname{diag}\left(\mathbf{B}, \mathbf{Q}_{\mathbf{1}}, \ldots, \mathbf{Q}_{\mathbf{N}}\right)$ is an n-by-n matrix.
- $\mathbf{R}=\operatorname{diag}\left(\mathbf{R}_{\mathbf{0}}, \mathbf{R}_{\mathbf{1}}, \ldots, \mathbf{R}_{\mathbf{N}}\right)$ is an m-by-m matrix.

Parallelization in the time dimension

$$
\underbrace{\left(\begin{array}{ccc}
\mathrm{D} & \mathbf{0} & \mathrm{~L} \\
\mathbf{0} & \mathrm{R} & \mathbf{H} \\
\mathrm{~L}^{\mathrm{T}} & \mathbf{H}^{\mathrm{T}} & \mathbf{0}
\end{array}\right)}_{\mathcal{A}}\left(\begin{array}{c}
\boldsymbol{\lambda} \\
\boldsymbol{\mu} \\
\boldsymbol{\delta x}
\end{array}\right)=\left(\begin{array}{l}
\mathbf{b} \\
\mathbf{d} \\
\mathbf{0}
\end{array}\right)
$$

- We can apply the matrix \mathcal{A} without requiring a sequential model integration (i.e. we can parallelise over sub-windows).

$$
\mathbf{L} \boldsymbol{\delta} \mathbf{x}=\left(\begin{array}{ccccc}
I & & & & \\
-M_{1} & I & & & \\
& -M_{2} & I & & \\
& & \ddots & \ddots & \\
& & & -M_{N} & I
\end{array}\right)\left(\begin{array}{c}
\delta x_{0} \\
\delta x_{1} \\
\delta x_{2} \\
\vdots \\
\delta x_{N}
\end{array}\right)=\left(\begin{array}{c}
\delta x_{0} \\
\delta x_{1}-M_{1} \delta x_{0} \\
\delta x_{2}-M_{2} \delta x_{1} \\
\vdots \\
\delta x_{N}-M_{N} \delta x_{N-1}
\end{array}\right)
$$

\rightarrow Matrix-vector products with \mathbf{L} can be parallelized in the time dimension

- Note that the matrix contains no inverse matrices.

Properties of the saddle point system

$$
\mathcal{A}=\left(\begin{array}{ccc}
\mathbf{D} & \mathbf{0} & \mathbf{L} \\
\mathbf{0} & \mathbf{R} & \mathbf{H} \\
\mathbf{L}^{\mathrm{T}} & \mathbf{H}^{\mathrm{T}} & \mathbf{0}
\end{array}\right)=\left(\begin{array}{cc}
\mathbf{A} & \mathbf{B}^{\mathrm{T}} \\
\mathbf{B} & \mathbf{0}
\end{array}\right)
$$

- \mathcal{A} is a $(2 n+m)$-by- $(2 n+m)$ indefinite symmetric matrix. \mathcal{A} has negative and positive eigenvalues.
- The solution of this problem is a saddle point.
- \mathbf{A} is symmetric positive definite, i.e. $\mathbf{x}^{\boldsymbol{\top}} \mathbf{A} \mathbf{x}>\mathbf{0}$
- If the schur complement $\mathbf{S}=-\mathbf{B A}^{-1} \mathbf{B}^{\boldsymbol{T}}$ is negative definite, then \mathcal{A} is invertible and saddle point system has a unique solution.

Properties of the saddle point system

- 4D-Var solves the primal problem: minimise along AXB.
- Dual algorithms (PSAS, RPCG) solves the Lagrangian dual problem: maximise along CXD.
- The saddle point formulation finds the saddle point of the Lagrangian problem
ref: Mike's presentation

Numerical solution of the saddle point system

- MINRES or GMRES Krylov subspace methods can be used to solve iteratively the symmetric indefinite saddle point system.

Numerical solution of the saddle point system

- MINRES or GMRES Krylov subspace methods can be used to solve iteratively the symmetric indefinite saddle point system.
- When using iterative methods, it is crucial to find an efficient preconditioner which attempts to improve the spectral properties of the system.

Efficient preconditioner \mathcal{P}

- is an approximation to \mathcal{A}
- the cost of constructing and applying the preconditioner should be less than the gain in computational cost
- exploits the block structure of the problem for saddle point systems

Numerical solution of the saddle point system

- MINRES or GMRES Krylov subspace methods can be used to solve iteratively the symmetric indefinite saddle point system.
- When using iterative methods, it is crucial to find an efficient preconditioner which attempts to improve the spectral properties of the system.

Efficient preconditioner \mathcal{P}

- is an approximation to \mathcal{A}
- the cost of constructing and applying the preconditioner should be less than the gain in computational cost
- exploits the block structure of the problem for saddle point systems
- We focus on GMRES since it allows us to use more general preconditioners.

How to precondition?

$$
\mathcal{A}=\left(\begin{array}{ccc}
\mathbf{D} & \mathbf{0} & \mathbf{L} \\
\mathbf{0} & \mathbf{R} & \mathbf{H} \\
\mathbf{L}^{\mathrm{T}} & \mathbf{H}^{\mathrm{T}} & \mathbf{0}
\end{array}\right)=\left(\begin{array}{cc}
\mathbf{A} & \mathbf{B}^{\mathrm{T}} \\
\mathbf{B} & \mathbf{0}
\end{array}\right)
$$

- Preconditioning saddle point systems is the subject of much current research!
\Rightarrow Nice review is given by Benzi, Golub and Liesen (2005).
- Most preconditioners in the literature assume that \mathbf{D} and \mathbf{R} are expensive, and L and H are cheap.

How to precondition?

$$
\mathcal{A}=\left(\begin{array}{ccc}
\mathbf{D} & \mathbf{0} & \mathbf{L} \\
\mathbf{0} & \mathbf{R} & \mathbf{H} \\
\mathbf{L}^{\mathrm{T}} & \mathbf{H}^{\mathrm{T}} & \mathbf{0}
\end{array}\right)=\left(\begin{array}{cc}
\mathbf{A} & \mathbf{B}^{\mathrm{T}} \\
\mathbf{B} & \mathbf{0}
\end{array}\right)
$$

- Preconditioning saddle point systems is the subject of much current research!
\Rightarrow Nice review is given by Benzi, Golub and Liesen (2005).
- Most preconditioners in the literature assume that \mathbf{D} and \mathbf{R} are expensive, and L and H are cheap.
- The opposite is true in our case! \mathbf{B} is the most computationally expensive block and calculations involving \mathbf{A} are relatively cheap.

How to precondition?

$$
\mathcal{A}=\left(\begin{array}{ccc}
\mathbf{D} & \mathbf{0} & \mathbf{L} \\
\mathbf{0} & \mathbf{R} & \mathbf{H} \\
\mathbf{L}^{\mathrm{T}} & \mathbf{H}^{\mathrm{T}} & \mathbf{0}
\end{array}\right)=\left(\begin{array}{cc}
\mathbf{A} & \mathbf{B}^{\mathrm{T}} \\
\mathbf{B} & \mathbf{0}
\end{array}\right)
$$

- The inexact constraint preconditioner proposed by (Bergamaschi et. al. 2005) is promising for our application. The preconditioner can be chosen as:

$$
\mathcal{P}=\left(\begin{array}{cc}
\mathbf{A} & \widetilde{\mathbf{B}}^{\mathrm{T}} \\
\widetilde{\mathbf{B}} & \mathbf{0}
\end{array}\right)=\left(\begin{array}{ccc}
\mathbf{D} & \mathbf{0} & \widetilde{\mathbf{L}} \\
0 & \mathbf{R} & \mathbf{0} \\
\tilde{\mathbf{L}}^{\mathrm{T}} & \mathbf{0} & \mathbf{0}
\end{array}\right) \Rightarrow \mathcal{P}^{-1}=\left(\begin{array}{ccc}
\mathbf{0} & \mathbf{0} & \tilde{\mathbf{L}} \\
\mathbf{0} & \mathbf{R}^{-1} & \mathbf{0} \\
\tilde{\mathbf{L}}^{-1} & \mathbf{0} & -\tilde{\mathbf{L}}^{-1} \mathbf{D} \tilde{\mathbf{L}}^{-\mathrm{T}}
\end{array}\right)
$$

where

- $\widetilde{\mathbf{L}}$ is an approximation to the matrix \mathbf{L}
- $\widetilde{\mathbf{B}}=\left[\begin{array}{ll}\widetilde{\mathbf{L}}^{\mathrm{T}} & \mathbf{0}\end{array}\right]$ is a full row rank approximation of the matrix $\mathbf{B} \in \mathbb{R}^{n \times(m+n)}$

Second-level preconditioner

$$
\underbrace{\left(\begin{array}{ccc}
\mathbf{D} & \mathbf{0} & \mathbf{L} \\
0 & \mathbf{R} & \mathbf{H} \\
\mathbf{L}^{\mathrm{T}} & \mathbf{H}^{\mathrm{T}} & \mathbf{0}
\end{array}\right)}_{\mathcal{A}_{k}} \underbrace{\left(\begin{array}{c}
\boldsymbol{\lambda} \\
\boldsymbol{\mu} \\
\boldsymbol{\delta} \mathbf{x}
\end{array}\right)}_{\mathbf{u}}=\underbrace{\left(\begin{array}{l}
\mathbf{b} \\
\mathbf{d} \\
\mathbf{0}
\end{array}\right)}_{\mathbf{f}_{k}}
$$

When solving a sequence of saddle point systems, can we further improve the preconditioning for the outer loops $k>1$?

Can we find low-rank updates for the inexact constraint preconditioner that approximates \mathcal{A}^{-1} or its effect on a vector?

Preconditioning Saddle Point Formulation of 4D-Var

- For $k=1$, we have the inexact constraint preconditioner:

$$
\mathcal{P}_{0}=\left(\begin{array}{cc}
\mathbf{A} & \mathbf{B}_{0}^{\mathrm{T}} \\
\mathbf{B}_{0} & \mathbf{0}
\end{array}\right) \quad \Rightarrow \quad \mathcal{P}_{0}^{-1} \mathcal{A}_{1} \mathbf{u}=\mathcal{P}_{0}^{-1} \mathbf{f}_{1}
$$

Preconditioning Saddle Point Formulation of 4D-Var

- For $k=1$, we have the inexact constraint preconditioner:

$$
\mathcal{P}_{0}=\left(\begin{array}{cc}
\mathbf{A} & \mathbf{B}_{0}^{\mathrm{T}} \\
\mathbf{B}_{0} & \mathbf{0}
\end{array}\right) \quad \Rightarrow \quad \mathcal{P}_{0}^{-1} \mathcal{A}_{1} \mathbf{u}=\mathcal{P}_{0}^{-1} \mathbf{f}_{1}
$$

- For $k>1$, we want to find a low-rank update $\Delta \mathbf{B}_{k}=\mathbf{B}_{k+1}-\mathbf{B}_{k}$ and use the updated preconditioner:

$$
\mathcal{P}_{k}=\left(\begin{array}{cc}
\mathbf{A} & \mathbf{B}_{k}^{\mathrm{T}} \\
\mathbf{B}_{k} & \mathbf{0}
\end{array}\right)+\left(\begin{array}{cc}
\mathbf{0} & \Delta \mathbf{B}_{k}^{\mathrm{T}} \\
\Delta \mathbf{B}_{k} & \mathbf{0}
\end{array}\right) \Rightarrow \mathcal{P}_{k}^{-1} \mathcal{A}_{k+1} \mathbf{u}=\mathcal{P}_{k}^{-1} \mathbf{f}_{k+1}
$$

Preconditioning Saddle Point Formulation of 4D-Var

- For $k=1$, we have the inexact constraint preconditioner:

$$
\mathcal{P}_{0}=\left(\begin{array}{cc}
\mathbf{A} & \mathbf{B}_{0}^{T} \\
\mathbf{B}_{0} & \mathbf{0}
\end{array}\right) \quad \Rightarrow \quad \mathcal{P}_{0}^{-1} \mathcal{A}_{1} \mathbf{u}=\mathcal{P}_{0}^{-1} \mathbf{f}_{1}
$$

- For $k>1$, we want to find a low-rank update $\Delta \mathbf{B}_{k}=\mathbf{B}_{k+1}-\mathbf{B}_{k}$ and use the updated preconditioner:

$$
\mathcal{P}_{k}=\left(\begin{array}{cc}
\mathbf{A} & \mathbf{B}_{k}^{\mathrm{T}} \\
\mathbf{B}_{k} & \mathbf{0}
\end{array}\right)+\left(\begin{array}{cc}
\mathbf{0} & \Delta \mathbf{B}_{k}^{\mathrm{T}} \\
\Delta \mathbf{B}_{k} & \mathbf{0}
\end{array}\right) \Rightarrow \mathcal{P}_{k}^{-1} \mathcal{A}_{k+1} \mathbf{u}=\mathcal{P}_{k}^{-1} \mathbf{f}_{k+1}
$$

How to obtain these updates?
\rightarrow GMRES performs matrix-vector products with \mathcal{A} :

$$
\underbrace{\left(\begin{array}{cc}
\mathbf{A} & \mathbf{B}^{\mathrm{T}} \\
\mathbf{B} & \mathbf{0}
\end{array}\right)}_{\mathcal{A}_{k}} \underbrace{\binom{\mathbf{v}_{j}}{\delta \boldsymbol{x}_{j}}}_{\mathbf{u}_{j}^{(k)}}=\underbrace{\binom{\mathbf{b}_{j}}{\mathbf{c}_{j}}}_{\mathbf{f}_{j}^{(k)}}
$$

\rightarrow We can use the pairs $\left(\mathbf{u}_{j}^{(k)}, \mathbf{f}_{j}^{(k)}\right)$ to find an update $\Delta \mathbf{B}_{k}$.

Preconditioning Saddle Point Formulation of 4D-Var

$$
\begin{aligned}
\left(\begin{array}{cc}
\mathbf{A} & \mathbf{B}^{\mathrm{T}} \\
\mathbf{B} & \mathbf{0}
\end{array}\right)\binom{\mathbf{v}}{\delta \boldsymbol{x}}=\binom{\mathbf{b}}{\mathbf{c}} & \Rightarrow\left(\begin{array}{cc}
\mathbf{A} & \mathbf{B}_{k}^{\mathrm{T}} \\
\mathbf{B}_{k} & \mathbf{0}
\end{array}\right)\binom{\mathbf{v}}{\delta \boldsymbol{x}}+\left(\begin{array}{cc}
\mathbf{0} & \Delta \mathbf{B}_{k}^{\mathrm{T}} \\
\Delta \mathbf{B}_{k} & \mathbf{0}
\end{array}\right)\binom{\mathbf{v}}{\delta \boldsymbol{x}}=\binom{\mathbf{b}}{\mathbf{c}} \\
& \Rightarrow\binom{\mathbf{A} \mathbf{v}+\mathbf{B}_{k}^{\mathrm{T}} \delta \boldsymbol{x}}{\mathbf{B}_{k} \mathbf{v}}+\binom{\Delta \mathbf{B}_{k}^{\mathrm{T}} \delta \boldsymbol{x}}{\Delta \mathbf{B}_{k} \mathbf{v}}=\binom{\mathbf{b}}{\mathbf{c}} \\
& \Rightarrow\binom{\Delta \mathbf{B}_{k}^{\mathrm{T}} \delta \boldsymbol{x}}{\Delta \mathbf{B}_{k} \mathbf{v}}=\binom{\mathbf{b}-\mathbf{A} \mathbf{v}-\mathbf{B}_{k}^{\mathrm{T}} \delta \boldsymbol{x}}{\mathbf{c}-\mathbf{B}_{\mathbf{k}} \mathbf{v}}
\end{aligned}
$$

Preconditioning Saddle Point Formulation of 4D-Var

$$
\begin{aligned}
\left(\begin{array}{cc}
\mathbf{A} & \mathbf{B}^{\mathrm{T}} \\
\mathbf{B} & \mathbf{0}
\end{array}\right)\binom{\mathbf{v}}{\delta \boldsymbol{x}}=\binom{\mathbf{b}}{\mathbf{c}} & \Rightarrow\left(\begin{array}{cc}
\mathbf{A} & \mathbf{B}_{k}^{\mathrm{T}} \\
\mathbf{B}_{k} & \mathbf{0}
\end{array}\right)\binom{\mathbf{v}}{\delta \boldsymbol{x}}+\left(\begin{array}{cc}
\mathbf{0} & \Delta \mathbf{B}_{k}^{\mathrm{T}} \\
\Delta \mathbf{B}_{k} & \mathbf{0}
\end{array}\right)\binom{\mathbf{v}}{\delta \boldsymbol{x}}=\binom{\mathbf{b}}{\mathbf{c}} \\
& \Rightarrow\binom{\mathbf{A} \mathbf{v}+\mathbf{B}_{k}^{\mathrm{T}} \delta \boldsymbol{x}}{\mathbf{B}_{k} \mathbf{v}}+\binom{\Delta \mathbf{B}_{k}^{\mathrm{T}} \delta \boldsymbol{x}}{\Delta \mathbf{B}_{k} \mathbf{v}}=\binom{\mathbf{b}}{\mathbf{c}} \\
& \Rightarrow\binom{\Delta \mathbf{B}_{k}^{\mathrm{T}} \delta \boldsymbol{x}}{\Delta \mathbf{B}_{k} \mathbf{v}}=\binom{\mathbf{b}-\mathbf{A} \mathbf{v}-\mathbf{B}_{k}^{\mathrm{T}} \delta \boldsymbol{x}}{\mathbf{c}-\mathbf{B}_{\mathbf{k}} \mathbf{v}}
\end{aligned}
$$

- Let's define the vectors \mathbf{r}_{b} and \mathbf{r}_{c} as

$$
\begin{aligned}
\mathbf{r}_{b} & =\mathbf{b}-\mathbf{A} \mathbf{v}-\mathbf{B}_{k}^{\mathrm{T}} \delta \boldsymbol{x} \\
\mathbf{r}_{c} & =\mathbf{c}-\mathbf{B}_{k} \mathbf{v}
\end{aligned}
$$

Preconditioning Saddle Point Formulation of 4D-Var

$$
\begin{aligned}
\left(\begin{array}{cc}
\mathbf{A} & \mathbf{B}^{\mathrm{T}} \\
\mathbf{B} & \mathbf{0}
\end{array}\right)\binom{\mathbf{v}}{\delta \boldsymbol{x}}=\binom{\mathbf{b}}{\mathbf{c}} & \Rightarrow\left(\begin{array}{cc}
\mathbf{A} & \mathbf{B}_{k}^{\mathrm{T}} \\
\mathbf{B}_{k} & \mathbf{0}
\end{array}\right)\binom{\mathbf{v}}{\delta \boldsymbol{x}}+\left(\begin{array}{cc}
\mathbf{0} & \Delta \mathbf{B}_{k}^{\mathrm{T}} \\
\Delta \mathbf{B}_{k} & \mathbf{0}
\end{array}\right)\binom{\mathbf{v}}{\delta \boldsymbol{x}}=\binom{\mathbf{b}}{\mathbf{c}} \\
& \Rightarrow\binom{\mathbf{A} \mathbf{v}+\mathbf{B}_{k}^{\mathrm{T}} \delta \boldsymbol{x}}{\mathbf{B}_{k} \mathbf{v}}+\binom{\Delta \mathbf{B}_{k}^{\mathrm{T}} \delta \boldsymbol{x}}{\Delta \mathbf{B}_{k} \mathbf{v}}=\binom{\mathbf{b}}{\mathbf{c}} \\
& \Rightarrow\binom{\Delta \mathbf{B}_{k}^{\mathrm{T}} \delta \boldsymbol{x}}{\Delta \mathbf{B}_{k} \mathbf{v}}=\binom{\mathbf{b}-\mathbf{A} \mathbf{v}-\mathbf{B}_{k}^{\mathrm{T}} \delta \boldsymbol{x}}{\mathbf{c}-\mathbf{B}_{\mathbf{k}} \mathbf{v}}
\end{aligned}
$$

- Let's define the vectors \mathbf{r}_{b} and \mathbf{r}_{c} as

$$
\begin{aligned}
\mathbf{r}_{b} & =\mathbf{b}-\mathbf{A} \mathbf{v}-\mathbf{B}_{k}^{\mathrm{T}} \delta \boldsymbol{x} \\
\mathbf{r}_{c} & =\mathbf{c}-\mathbf{B}_{k} \mathbf{v}
\end{aligned}
$$

- Then we have

$$
\begin{aligned}
\Delta \mathbf{B}_{k}^{\mathrm{T}} \delta \boldsymbol{x} & =\mathbf{r}_{b} \\
\Delta \mathbf{B}_{k} \mathbf{v} & =\mathbf{r}_{c}
\end{aligned}
$$

\rightarrow We want to find an update $\Delta \mathbf{B}_{k}$ satisfying these equations.

Preconditioning Saddle Point Formulation of 4D-Var

- A rank-1 solution (an update to \mathbf{B}_{k}) for the equations:

$$
\begin{aligned}
\Delta \mathbf{B}_{k}^{\mathrm{T}} \delta \boldsymbol{x} & =\mathbf{r}_{b} \\
\Delta \mathbf{B}_{k} \mathbf{v} & =\mathbf{r}_{c}
\end{aligned}
$$

can be given as:

$$
\Delta \mathbf{B}_{k}=\frac{\mathbf{r}_{c} \mathbf{r}_{b}^{T}}{\mathbf{v \mathbf { r } _ { c } ^ { T } \delta \boldsymbol { x }}}=\frac{\left(\mathbf{c}-\mathbf{B}_{k} \mathbf{v}\right)\left(\mathbf{b}-\mathbf{A} \mathbf{v}-\mathbf{B}_{k}^{T} \delta \boldsymbol{x}\right)^{T}}{\left(\mathbf{c}-\mathbf{B}_{k} \mathbf{v}\right)^{T} \delta \boldsymbol{x}}
$$

Preconditioning Saddle Point Formulation of 4D-Var

- A rank-1 solution (an update to \mathbf{B}_{k}) for the equations:

$$
\begin{aligned}
\Delta \mathbf{B}_{k}^{\mathrm{T}} \delta \boldsymbol{x} & =\mathbf{r}_{b} \\
\Delta \mathbf{B}_{k} \mathbf{v} & =\mathbf{r}_{c}
\end{aligned}
$$

can be given as:

$$
\Delta \mathbf{B}_{k}=\frac{\mathbf{r}_{c} \mathbf{r}_{b}^{T}}{\mathbf{v} \mathbf{r}_{c}^{T} \delta \boldsymbol{x}}=\frac{\left(\mathbf{c}-\mathbf{B}_{k} \mathbf{v}\right)\left(\mathbf{b}-\mathbf{A} \mathbf{v}-\mathbf{B}_{k}^{T} \delta \boldsymbol{x}\right)^{T}}{\left(\mathbf{c}-\mathbf{B}_{k} \mathbf{v}\right)^{T} \delta \boldsymbol{x}}
$$

- This formula can then be used to update:

$$
\mathbf{B}_{k+1}=\mathbf{B}_{k}+\Delta \mathbf{B}_{k}
$$

Preconditioning Saddle Point Formulation of 4D-Var

- A rank-1 solution (an update to \mathbf{B}_{k}) for the equations:

$$
\begin{aligned}
\Delta \mathbf{B}_{k}^{\mathrm{T}} \delta \boldsymbol{x} & =\mathbf{r}_{b} \\
\Delta \mathbf{B}_{k} \mathbf{v} & =\mathbf{r}_{c}
\end{aligned}
$$

can be given as:

$$
\Delta \mathbf{B}_{k}=\frac{\mathbf{r}_{c} \mathbf{r}_{b}^{T}}{\mathbf{v \mathbf { r } _ { c } ^ { T }} \delta \boldsymbol{x}}=\frac{\left(\mathbf{c}-\mathbf{B}_{k} \mathbf{v}\right)\left(\mathbf{b}-\mathbf{A} \mathbf{v}-\mathbf{B}_{k}^{\mathrm{T}} \delta \boldsymbol{x}\right)^{T}}{\left(\mathbf{c}-\mathbf{B}_{k} \mathbf{v}\right)^{T} \delta \boldsymbol{x}}
$$

- This formula can then be used to update:

$$
\mathbf{B}_{k+1}=\mathbf{B}_{k}+\Delta \mathbf{B}_{k}
$$

- How we will use this update in a GMRES iteration?

$$
\mathcal{P}_{k}=\left(\begin{array}{cc}
\mathbf{A} & \mathbf{B}_{k+1}^{\mathrm{T}} \\
\mathbf{B}_{k+1} & \mathbf{0}
\end{array}\right) \quad \Rightarrow \quad \mathcal{P}_{k}^{-1} \mathcal{A}_{k+1} \mathbf{u}=\mathcal{P}_{k}^{-1} \mathbf{f}_{k+1}
$$

- \mathcal{P}_{k}^{-1} can be obtained by using Sherman-Morrison-Woodbury formula.

Preconditioning Saddle Point Formulation of 4D-Var

- We have shown that it is possible to find a low-cost low-rank update for the inexact constraint preconditioner.
- This update amounts to the two-sided-rank-one (TR1) update proposed by Griewank and Walther (2002). They used to update Jacobian matrix in a constrained optimisation problem.

Preconditioning Saddle Point Formulation of 4D-Var

- We have shown that it is possible to find a low-cost low-rank update for the inexact constraint preconditioner.
- This update amounts to the two-sided-rank-one (TR1) update proposed by Griewank and Walther (2002). They used to update Jacobian matrix in a constrained optimisation problem.

TR1 update:

- It generalizes the classical symmetric rank-one (SR1) update.

Preconditioning Saddle Point Formulation of 4D-Var

- We have shown that it is possible to find a low-cost low-rank update for the inexact constraint preconditioner.
- This update amounts to the two-sided-rank-one (TR1) update proposed by Griewank and Walther (2002). They used to update Jacobian matrix in a constrained optimisation problem.

TR1 update:

- It generalizes the classical symmetric rank-one (SR1) update.
- It maintains the validity of all previous secant conditions.

Preconditioning Saddle Point Formulation of 4D-Var

- We have shown that it is possible to find a low-cost low-rank update for the inexact constraint preconditioner.
- This update amounts to the two-sided-rank-one (TR1) update proposed by Griewank and Walther (2002). They used to update Jacobian matrix in a constrained optimisation problem.

TR1 update:

- It generalizes the classical symmetric rank-one (SR1) update.
- It maintains the validity of all previous secant conditions.
- It is invariant with respect to linear transformations

Preconditioning Saddle Point Formulation of 4D-Var

- We have shown that it is possible to find a low-cost low-rank update for the inexact constraint preconditioner.
- This update amounts to the two-sided-rank-one (TR1) update proposed by Griewank and Walther (2002). They used to update Jacobian matrix in a constrained optimisation problem.

TR1 update:

- It generalizes the classical symmetric rank-one (SR1) update.
- It maintains the validity of all previous secant conditions.
- It is invariant with respect to linear transformations
- It has no least change characterization in terms of any particular matrix norm.

Least-Frobenius norm update

- We are interested with the solution of the following problem:

$$
\begin{gathered}
\min _{\Delta B_{k}}\left\|\mathbf{W}_{1}^{-1} \Delta \mathbf{B}_{k} \mathbf{W}_{2}^{-1}\right\|_{F} \\
\text { s.t. } \Delta \mathbf{B}_{k}^{T} \delta \boldsymbol{x}=\mathbf{r}_{b} \\
\Delta \mathbf{B}_{k} \mathbf{v}=\mathbf{r}_{c}
\end{gathered}
$$

Least-Frobenius norm update

- We are interested with the solution of the following problem:

$$
\begin{gathered}
\min _{\Delta B_{k}}\left\|\mathbf{W}_{1}^{-1} \Delta \mathbf{B}_{k} \mathbf{W}_{2}^{-1}\right\|_{F} \\
\text { s.t. } \Delta \mathbf{B}_{k}^{T} \delta \boldsymbol{x}=\mathbf{r}_{b} \\
\Delta \mathbf{B}_{k} \mathbf{v}=\mathbf{r}_{c}
\end{gathered}
$$

where \mathbf{W}_{1} is any m-by- m nonsingular matrix such that $\mathbf{W}_{1} \mathbf{W}_{1}^{T} \delta \boldsymbol{x}=\mathbf{c}$, and \mathbf{W}_{2} is any n-by- n nonsingular matrix such that $\mathbf{W}_{2}^{\top} \mathbf{W}_{2} \mathbf{v}=\mathbf{s}$.

Least-Frobenius norm update

- We are interested with the solution of the following problem:

$$
\begin{gathered}
\min _{\Delta B_{k}}\left\|\mathbf{W}_{1}^{-1} \Delta \mathbf{B}_{k} \mathbf{W}_{2}^{-1}\right\|_{F} \\
\text { s.t. } \Delta \mathbf{B}_{k}^{T} \delta \boldsymbol{x}=\mathbf{r}_{b} \\
\Delta \mathbf{B}_{k} \mathbf{v}=\mathbf{r}_{c}
\end{gathered}
$$

where \mathbf{W}_{1} is any m-by- m nonsingular matrix such that $\mathbf{W}_{1} \mathbf{W}_{1}^{T} \delta \boldsymbol{x}=\mathbf{c}$, and \mathbf{W}_{2} is any n-by- n nonsingular matrix such that $\mathbf{W}_{2}^{T} \mathbf{W}_{2} \mathbf{v}=\mathbf{s}$.

- The solution is given by

$$
\Delta \mathbf{B}_{k}=\frac{\mathbf{c} \mathbf{r}_{b}^{T}}{\delta \boldsymbol{x}^{T} \mathbf{c}}+\frac{r_{c} \mathbf{s}^{T}}{\mathbf{v}^{T} \mathbf{s}}-\frac{\mathbf{c} \delta \boldsymbol{x}^{T} \mathbf{r}_{c} \mathbf{s}^{T}}{\delta \boldsymbol{x}^{T} \mathbf{c} \mathbf{v}^{T} \mathbf{s}}
$$

which is equivalent to

$$
\Delta \mathbf{B}_{k}=\frac{\mathbf{c}\left(\mathbf{b}-\mathbf{A} \mathbf{v}-\mathbf{B}_{k}^{T} \delta \boldsymbol{x}\right)^{T}}{\delta \boldsymbol{x}^{T} \mathbf{c}}+\frac{\left(\mathbf{c}-\mathbf{B}_{k} \mathbf{v}\right) \mathbf{s}^{T}}{\mathbf{v}^{T} \mathbf{s}}-\frac{\mathbf{c} \delta \boldsymbol{x}^{T}\left(\mathbf{c}-\mathbf{B}_{k} \mathbf{v}\right) \mathbf{s}^{T}}{\delta \boldsymbol{x}^{T} \mathbf{c} \mathbf{v}^{T} \mathbf{s}}
$$

Least-Frobenius norm update

- It is a new update that can be used for Jacobian updates
- It has least change characterization in terms of weighted Frobenius norm
- It generalizes the classical Davidon-Fletcher-Powell (DFP) update
- It maintains the validity of all previous secant conditions (when the block formula is used)
- It is invariant with respect to linear transformations

Numerical Results

Implementation platform

- We used the Object Oriented Prediction System (OOPS) developed by ECMWF
- OOPS consists of simplified models of a real-system

The model

- It is a two-layer quasi-geostraphic model with 1600 grid-points

Implementation details

- There are 100 observations of stream function every 3 hours, 100 wind observations plus 100 wind-speed observations every 6 hours
- The error covariance matrices are assumed to be horizontally isotropic and homogeneous, with Gaussian spatial structure
- The analysis window is 24 hours, and is divided into 8 subwindows
- 3 outer loops with 10 inner loops each are performed

Methods

(1) Standard weak-constrained 4D-Var formulation
\rightarrow Solution method is preconditioned conjugate-gradients
(1) Standard weak-constrained 4D-Var formulation
\rightarrow Solution method is preconditioned conjugate-gradients
(2) Saddle point formulation with an updated inexact constraint preconditioner \rightarrow Solution method is GMRES
\rightarrow The initial preconditioner is chosen as

$$
\mathcal{P}_{0}=\left(\begin{array}{ccc}
\mathbf{D} & \mathbf{0} & \widetilde{\mathbf{L}} \\
\mathbf{0} & \mathbf{R} & \mathbf{0} \\
\widetilde{\mathbf{L}}^{\mathrm{T}} & \mathbf{0} & \mathbf{0}
\end{array}\right) \quad \text { with } \quad \tilde{\mathbf{L}}=\left(\begin{array}{cccc}
\mathbf{I} & & & \\
-\mathbf{I} & \mathbf{I} & & \\
& \ddots & \ddots & \\
& & -\mathbf{I} & \mathbf{I}
\end{array}\right)
$$

Methods

(1) Standard weak-constrained 4D-Var formulation
\rightarrow Solution method is preconditioned conjugate-gradients
(2) Saddle point formulation with an updated inexact constraint preconditioner \rightarrow Solution method is GMRES
\rightarrow The initial preconditioner is chosen as

$$
\begin{gathered}
\mathcal{P}_{0}=\left(\begin{array}{ccc}
\mathbf{D} & \mathbf{0} & \widetilde{\mathbf{L}} \\
\mathbf{0} & \mathbf{R} & \mathbf{0} \\
\widetilde{\mathbf{L}}^{\mathrm{T}} & \mathbf{0} & \mathbf{0}
\end{array}\right) \quad \text { with } \quad \tilde{\mathbf{L}}=\left(\begin{array}{ccc}
\mathbf{I} & & \\
-\mathbf{I} & \mathbf{I} & \\
& \ddots & \ddots \\
& & -\mathbf{I} \\
& \mathbf{I}
\end{array}\right) \\
\mathcal{P}_{0}^{-1}=\left(\begin{array}{ccc}
\mathbf{0} & \mathbf{0} & \tilde{\mathbf{L}}^{-\mathrm{T}} \\
\mathbf{0} & \mathbf{R}^{-1} & \mathbf{0} \\
\tilde{\mathbf{L}}^{-1} & \mathbf{0} & -\widetilde{\mathbf{L}}^{-1} \mathbf{D} \tilde{\mathbf{L}}^{-\mathrm{T}}
\end{array}\right) \quad \text { and } \quad \tilde{\mathbf{L}}^{-1}=\left(\begin{array}{cccc}
\mathbf{I} & & \\
\mathbf{I} & \mathbf{I} & \\
\vdots & \ddots & \ddots & \\
\mathbf{I} & \cdots & \mathbf{I} & \mathbf{I}
\end{array}\right) .
\end{gathered}
$$

Second-level preconditioners:
(1) \mathcal{T}_{k} : The preconditioner obtained by using the TR1 update
(2) \mathcal{F}_{k} : The preconditioner obtained by using the least-Frobenius update

The performance of the second level preconditioners

\rightarrow Last 8 pairs were used to construct the preconditioner

Figure: Nonlinear cost function values along iterations

- Second-level preconditioners obtained by using updates accelerate the convergence
- The performance of the least-Frobenius and TR1 update are very similar.

Overall performance compared with the standard 4DVar formulation

Figure: Nonlinear cost function values along iterations

Figure: Nonlinear cost function values along sequential subwindow integrations

- At each iteration the standard 4 DVar formulation requires one application of \mathbf{L}^{-1}, followed by one application of $\mathbf{L}^{-\mathrm{T}}$ (16 sequential subwindow integrations)
- At each iteration of saddle point formulation require one subwindow integration (provided that \mathbf{L}^{-1} and $\mathbf{L}^{-\mathbf{T}}$ are applied simultaneously)

Conclusions

- The saddle point formulation of weak-constraint 4D-Var allows parallelisation in the time dimension.
- Finding an effective preconditioner is a key issue in solving the saddle point systems.
- The inexact constraint preconditioner can be used to precondition the saddle point formulation of 4D-Var.
- When solving a sequence of saddle point systems, a low-rank low-cost update formulas can be found to further improve preconditioning.
- The preconditioned GMRES algorithm for saddle point formulation is competitive with the existing algorithms and has the potential to allow 4D-Var to remain computationally viable on next-generation computer architectures.

Thank you for your attention!

Preconditioning Saddle Point Formulation of 4D-Var

- As a result, an inexact constraint preconditioner \mathcal{P} can be updated from

$$
\mathcal{P}_{j+1}=\mathcal{P}_{j}+\left(\begin{array}{cc}
\mathbf{0} & \Delta \mathbf{B}^{T} \\
\Delta \mathbf{B} & \mathbf{0}
\end{array}\right)=\mathcal{P}_{j}+\left(\begin{array}{cc}
\mathbf{0} & \alpha \mathbf{w} \mathbf{v}^{\mathrm{T}} \\
\alpha \mathbf{v} \mathbf{w}^{\mathrm{T}} & \mathbf{0}
\end{array}\right)
$$

where $\mathbf{w}=\mathbf{r}_{b}, \mathbf{v}=\mathbf{r}_{c}$ and $\alpha=1 / \mathbf{v}^{\mathrm{T}} \delta \boldsymbol{x}$.

- We can rewrite this formula as

$$
\mathcal{P}_{j+1}=\mathcal{P}_{j}+\underbrace{\left(\begin{array}{ll}
\mathbf{0} & \mathbf{w} \\
\mathbf{v} & \mathbf{0}
\end{array}\right)}_{\mathbf{F}} \underbrace{\left(\begin{array}{cc}
\alpha \mathbf{w}^{T} & \mathbf{0} \\
\mathbf{0} & \alpha \mathbf{v}^{T}
\end{array}\right)}_{\mathbf{G}}
$$

where \mathbf{F} is an $(2 n+m)$-by- 2 matrix and \mathbf{G} is an 2-by- $(2 n+m)$ matrix.

- Using the Sherman-Morrison-Woodbury formula on this equation gives the inverse update as

$$
\mathcal{P}_{j+1}^{-1}=\mathcal{P}_{j}^{-1}-\mathcal{P}_{j}^{-1} \mathbf{F}\left(\mathbf{I}_{2}+\mathbf{G} \mathcal{P}_{j}^{-1} \mathbf{F}\right)^{-1} \mathbf{G} \mathcal{P}_{j}^{-1}
$$

Preconditioning Saddle Point Formulation of 4D-Var

- Remember that we want to find an update such that

$$
\begin{align*}
\Delta \mathbf{B}^{\mathrm{T}} \mathbf{v} & =\mathbf{r}_{b} \tag{1}\\
\Delta \mathbf{B} \delta \boldsymbol{x} & =\mathbf{r}_{c} \tag{2}
\end{align*}
$$

Preconditioning Saddle Point Formulation of 4D-Var

- Remember that we want to find an update such that

$$
\begin{align*}
\Delta \mathbf{B}^{\mathrm{T}} \mathbf{v} & =\mathbf{r}_{b} \tag{1}\\
\Delta \mathbf{B} \delta \boldsymbol{x} & =\mathbf{r}_{c} \tag{2}
\end{align*}
$$

- Any solution $\Delta \mathbf{B}$ satisfying Equation (1) can be written as [Lemma 2.1](Sun 1999)

$$
\Delta \mathbf{B}^{\mathrm{T}}=\mathbf{r}_{b} \mathbf{u}_{2}^{\dagger}+\mathbf{S}\left(\mathbf{I}-\mathbf{u}_{2} \mathbf{u}_{2}^{\dagger}\right)
$$

where \dagger denotes the pseudo-inverse and \mathbf{S} is an $(n+m) \times n$ matrix. Inserting this relation into (2) yields

$$
\mathbf{u}_{2}^{\mathrm{T} \dagger} \mathbf{r}_{b}^{\mathrm{T}} \mathbf{u}_{1}+\left(\mathbf{I}-\mathbf{u}_{2}^{\mathrm{T} \dagger} \mathbf{u}_{2}^{\mathrm{T}}\right) \mathbf{S}^{\mathrm{T}} \mathbf{u}_{1}=\mathbf{r}_{c}
$$

Preconditioning Saddle Point Formulation of 4D-Var

- Remember that we want to find an update such that

$$
\begin{align*}
\Delta \mathbf{B}^{\mathrm{T}} \mathbf{v} & =\mathbf{r}_{b} \tag{1}\\
\Delta \mathbf{B} \delta \boldsymbol{x} & =\mathbf{r}_{c} \tag{2}
\end{align*}
$$

- Any solution $\Delta \mathbf{B}$ satisfying Equation (1) can be written as [Lemma 2.1](Sun 1999)

$$
\Delta \mathbf{B}^{\mathrm{T}}=\mathbf{r}_{b} \mathbf{u}_{2}^{\dagger}+\mathbf{S}\left(\mathbf{I}-\mathbf{u}_{2} \mathbf{u}_{2}^{\dagger}\right)
$$

where \dagger denotes the pseudo-inverse and \mathbf{S} is an $(n+m) \times n$ matrix. Inserting this relation into (2) yields

$$
\mathbf{u}_{2}^{\mathrm{T} \dagger} \mathbf{r}_{b}^{\mathrm{T}} \mathbf{u}_{1}+\left(\mathbf{I}-\mathbf{u}_{2}^{\mathrm{T} \dagger} \mathbf{u}_{2}^{\mathrm{T}}\right) \mathbf{S}^{\mathrm{T}} \mathbf{u}_{1}=\mathbf{r}_{c}
$$

- If this equation admits one solution, its least Frobenius norm solution,

$$
\min _{\mathbf{s}^{\mathrm{T}} \in \mathbb{R}^{m \times n}}\left\|\left(\mathbf{r}_{c}-\mathbf{u}_{2}^{\mathrm{T} \dagger} \mathbf{r}_{b}^{\mathrm{T}} \mathbf{u}_{1}\right)-\left(\mathbf{I}-\mathbf{u}_{2}^{\mathrm{T} \dagger} \mathbf{u}_{2}^{\mathrm{T}}\right) \mathbf{S}^{\mathrm{T}} \mathbf{u}_{1}\right\|_{F}
$$

can be written as [Lemma 2.3](Sun 1999)

$$
\left(\mathbf{S}^{\mathrm{T}}\right)^{*}=\left(\mathbf{I}-\mathbf{u}_{2}^{\mathrm{T} \dagger} \mathbf{u}_{2}^{\mathrm{T}}\right)^{\dagger}\left(\mathbf{r}_{c}-\mathbf{u}_{2}^{\mathrm{T} \dagger} \mathbf{r}_{b}^{\mathrm{T}} \mathbf{u}_{1}\right) \mathbf{u}_{1}^{\dagger}
$$

Preconditioning Saddle Point Formulation of 4D-Var

- Substituting the solution for \mathbf{S} into $\Delta \mathbf{B}$ yields that

$$
\Delta \mathbf{B}^{*}=\mathbf{u}_{2}^{\mathrm{T} \dagger} \mathbf{r}_{b}^{\mathrm{T}}+\left(\mathbf{I}-\mathbf{u}_{2}^{\mathrm{T} \dagger} \mathbf{u}_{2}^{\mathrm{T}}\right) \mathbf{r}_{c} \mathbf{u}_{1}^{\dagger}
$$

Preconditioning Saddle Point Formulation of 4D-Var

- Substituting the solution for \mathbf{S} into $\Delta \mathbf{B}$ yields that

$$
\Delta \mathbf{B}^{*}=\mathbf{u}_{2}^{\mathrm{T} \dagger} \mathbf{r}_{b}^{\mathrm{T}}+\left(\mathbf{I}-\mathbf{u}_{2}^{\mathrm{T} \dagger} \mathbf{u}_{2}^{\mathrm{T}}\right) \mathbf{r}_{c} \mathbf{u}_{1}^{\dagger}
$$

- This formula can be rewritten as

$$
\Delta \mathbf{B}^{*}=\left[\begin{array}{lll}
\delta \boldsymbol{x}^{\mathrm{T} \dagger} & \mathbf{r}_{c} & -\delta \boldsymbol{x}^{\mathrm{T} \dagger}
\end{array}\right]\left[\begin{array}{c}
\mathbf{r}_{\mathbf{b}}^{\mathrm{T}} \\
\mathbf{v}^{\dagger} \\
\delta \boldsymbol{x}^{\mathrm{T}} \mathbf{r}_{c} \mathbf{v}^{\dagger}
\end{array}\right]=\mathbf{V} \mathbf{W}^{\mathrm{T}}
$$

where \mathbf{V} is an m-by- 3 matrix and \mathbf{W} is an $2 n$-by- 3 matrix.

Preconditioning Saddle Point Formulation of 4D-Var

- Substituting the solution for \mathbf{S} into $\Delta \mathbf{B}$ yields that

$$
\Delta \mathbf{B}^{*}=\mathbf{u}_{2}^{\mathrm{T} \dagger} \mathbf{r}_{b}^{\mathrm{T}}+\left(\mathbf{I}-\mathbf{u}_{2}^{\mathrm{T} \dagger} \mathbf{u}_{2}^{\mathrm{T}}\right) \mathbf{r}_{c} \mathbf{u}_{1}^{\dagger}
$$

- This formula can be rewritten as

$$
\Delta \mathbf{B}^{*}=\left[\begin{array}{lll}
\delta \boldsymbol{x}^{\mathrm{T} \dagger} & \mathbf{r}_{c} & -\delta \boldsymbol{x}^{\mathrm{T} \dagger}
\end{array}\right]\left[\begin{array}{c}
\mathbf{r}_{\mathbf{b}}{ }^{\mathrm{T}} \\
\mathbf{v}^{\dagger} \\
\delta \boldsymbol{x}^{\mathrm{T}} \mathbf{r}_{c} \mathbf{v}^{\dagger}
\end{array}\right]=\mathbf{V} \mathbf{W}^{\mathrm{T}},
$$

where \mathbf{V} is an m-by- 3 matrix and \mathbf{W} is an $2 n$-by- 3 matrix.

- The preconditioner can be updated by using the following formula

$$
\mathcal{P}_{1}=\mathcal{P}_{0}+\left(\begin{array}{cc}
\mathbf{0} & \mathbf{W} \mathbf{V}^{T} \\
\mathbf{V} \mathbf{W}^{T} & \mathbf{0}
\end{array}\right)=\mathcal{P}_{0}+\underbrace{\left(\begin{array}{cc}
\mathbf{0} & \mathbf{W} \\
\mathbf{V} & \mathbf{0}
\end{array}\right)}_{\mathbf{F}} \underbrace{\left(\begin{array}{cc}
\mathbf{W}^{T} & \mathbf{0} \\
\mathbf{0} & \mathbf{v}^{\top}
\end{array}\right)}_{\mathbf{G}}
$$

Preconditioning Saddle Point Formulation of 4D-Var

- The inverse formula is then given by

$$
\mathcal{P}_{F}^{-1}=\mathcal{P}_{0}^{-1}-\mathcal{P}_{0}^{-1} \mathbf{F}\left(\mathbf{I}_{4}+\mathbf{G} \mathcal{P}_{0}^{-1} \mathbf{F}\right)^{-1} \mathbf{G} \mathcal{P}_{0}^{-1}
$$

where \mathbf{F} is an $(2 n+m)$-by-4 matrix and \mathbf{G} is an 4-by- $(2 n+m)$ matrix.

Preconditioning Saddle Point Formulation of 4D-Var

- The inverse formula is then given by

$$
\mathcal{P}_{F}^{-1}=\mathcal{P}_{0}^{-1}-\mathcal{P}_{0}^{-1} \mathbf{F}\left(\mathbf{I}_{4}+\mathbf{G} \mathcal{P}_{0}^{-1} \mathbf{F}\right)^{-1} \mathbf{G} \mathcal{P}_{0}^{-1}
$$

where \mathbf{F} is an $(2 n+m)$-by- 4 matrix and \mathbf{G} is an 4 -by- $(2 n+m)$ matrix.

- Let's remember the first formula:

$$
\mathcal{P}_{T}^{-1}=\mathcal{P}_{0}^{-1}-\mathcal{P}_{0}^{-1} \mathbf{F}\left(\mathbf{I}_{2}+\mathbf{G} \mathcal{P}_{0}^{-1} \mathbf{F}\right)^{-1} \mathbf{G} \mathcal{P}_{0}^{-1}
$$

- The least Frobenius norm update is slightly more expensive than the first update however it is more stable.
\rightarrow It can be shown that $\left\|\mathcal{P}_{T}^{-1}\right\|_{F}$ can be arbitrarily larger than $\left\|\mathcal{P}_{F}^{-1}\right\|_{F}$

