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The Evolution of Modern Data Assimilation

Analysis: The process of approximating the true state of a
(geo)physical system at a given time.

For example:
I Hand analysis of synoptic observations (1850 LeVerrier, Fitzroy).
I Polynomial Interpolation (1950s Panofsky)

An important step forward was made by Gilchrist and Cressman
(1954), who introduced the idea of using a previous numerical
forecast to provide a preliminary estimate of the analysis.

This prior estimate was called the background.
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The Evolution of Modern Data Assimilation

Bergthorsson and Döös (1955) took the idea of using a background
field a step further by casting the analysis problem in terms of
increments which were added to the background.

The increments were weighted linear combinations of nearby
observation increments (observation minus background), with the
weights determined statistically.

This idea of statistical combination of background and synoptic
observations led ultimately to Optimal Interpolation.

The use of statistics to merge model fields with observations is
fundamental to all current methods of analysis.
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The Evolution of Modern Data Assimilation

An important change of emphasis happened in the early 1970s with
the introduction of primitive-equation models.

Primitive equation models support inertia-gravity waves. This makes
them much more fussy about their initial conditions than the filtered
models that had been used hitherto.

The analysis procedure became much more intimately linked with the
model. The analysis had to produce an initial state that respected the
model’s dynamical balances.

Unbalanced increments from the analysis procedure would be rejected
as a result of geostrophic adjustment.

Initialization techniques (which suppress inertia-gravity waves)
became important.
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The Evolution of Modern Data Assimilation

The idea that the analysis procedure must present observational
information to the model in a way in which it can be absorbed (i.e.
not rejected by geostrophic adjustment) led to the coining of the term
data assimilation.

A final impetus towards the modern concept of data assimilation
came from the increasing availability of asynoptic observations from
satellite instruments.

It was no longer sufficient to think of the analysis purely in terms of
spatial interpolation of contemporaneous observations.

The time dimension became important, and the model dynamics
assumed the role of propagating observational information in time to
allow a synoptic view of the state of the system to be generated from
asynoptic data.
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Elementary Statistics
Suppose we want to estimate the temperature of this room, given:

A prior estimate: Tb.
I E.g., we measured the temperature an hour ago, and we have some

idea (i.e. a model) of how the temperature varies as a function of time,
the number of people in the room, whether the windows are open, etc.

A thermometer: To .

Denote the true temperature of the room by T ∗.

The errors in Tb and To are:

εb = Tb − T ∗

εo = To − T ∗

We will assume that the error statistics of Tb and To are known, and
that Tb and To have been adjusted (bias corrected) so that their
mean errors are zero:

εb = εo = 0
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Elementary Statistics

We estimate the temperature of the room as a linear combination of
Tb and To :

Ta = αTo + βTb + γ

Denote the error of our estimate as εa = Ta − T ∗.

We want the estimate to be unbiased: εa = 0.

We have:

Ta = T ∗ + εa = α (T ∗ + εo) + β (T ∗ + εb) + γ

Taking the mean and rearranging gives:

εa = (α + β − 1)T ∗ + γ

Since this holds for any T ∗, we must have
I γ = 0, and
I α + β − 1 = 0.

I.e. Ta = αTo + (1− α)Tb
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Elementary Statistics

The general Linear Unbiased Estimate is:

Ta = αTo + (1− α)Tb

Now consider the error of this estimate.

Subtracting T ∗ from both sides of the equation gives

εa = αεo + (1− α)εb

The variance of the estimate is:

ε2a = α2ε2o + 2α(1− α)εoεb + (1− α)2ε2b

The quantity εoεb represents the covariance between the error of our
prior estimate and the error of our thermometer measurement.

There is no reason for these errors to be connected in any way.

We will assume that εoεb = 0.
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Elementary Statistics

ε2a = α2ε2o + (1− α)2ε2b

We can easily derive some properties of our estimate:

dε2a
dα = 2αε2o − 2(1− α)ε2b

For α = 0, ε2a = ε2b and dε2a
dα = −2ε2b < 0

For α = 1, ε2a = ε2o and dε2a
dα = 2ε2o > 0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
2

3

4

5

6

7

8

9

alpha

From this we can deduce:

For 0 ≤ α ≤ 1, ε2a ≤ max(ε2b, ε
2
o)

The minimum-variance estimate occurs for α ∈ (0, 1).

The minimum-variance estimate satisfies ε2a < min(ε2b, ε
2
o)
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Elementary Statistics

The minimum-variance estimate occurs when

dε2a
dα

= 2αε2o − 2(1− α)ε2b = 0

⇒ α =
ε2b

ε2b + ε2o

It is not difficult to show that the error variance of this minimum-variance
estimate is:

ε2a =

(
1

ε2b
+

1

ε2o

)−1
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Extension to Multiple Dimensions

Now, let’s turn our attention to the multi-dimensional case.

Instead of a scalar prior estimate Tb, we now consider a vector xb.

We can think of xb as representing the entire state of a numerical
model at some time.

The elements of xb might be grid-point values, spherical harmonic
coefficients, etc., and some elements may represent temperatures,
others wind components, etc.

We refer to xb as the background

Similarly, we generalize the observation to a vector y.

y can contain a disparate collection of observations at different
locations, and of different variables.
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Extension to Multiple Dimensions

The major difference between the simple scalar example and the
multi-dimensional case is that there is no longer a one-to-one
correspondence between the elements of the observation vector and
those of the background vector.

It is no longer trivial to compare observations and background.

Observations are not necessarily located at model gridpoints

The observed variables (e.g. radiances) may not correspond directly
with any of the variables of the model.

To overcome this problem, we must asume that our model is a
more-or-less complete representation of reality, so that we can always
determine “model equivalents” of the observations.
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Extension to Multiple Dimensions

We formalize this by assuming the existance of an observation
operator, H.

Given a model-space vector, x, the vector H(x) can be compared
directly with y, and represents the “model equivalent” of y.

For now, we will assume that H is perfect. I.e. it does not introduce
any error, so that:

H(x∗) = y∗

where x∗ is the true state, and y∗ contains the true values of the
observed quantities.
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Extension to Multiple Dimensions

As we did in the scalar case, we will look for an analysis that is a
linear combination of the available information:

xa = Fxb + GH(xb) + Ky + c

where F, G and K are matrices, and where c is a vector.

If H is linear, we can proceed as in the scalar case and look for a
linear unbiased estimate.

In the more general case of nonlinear H, we will require that error-free
inputs (xb = x∗ and y = y∗) produce an error-free analysis (xa = x∗):

x∗ = Fx∗ + GH(x∗) + KH(x∗) + c

Since this applies for any x∗, we must have c = 0 and

F + GH(·) ≡ I−KH(·)

Our analysis equation is thus:

xa = xb + K (y −H(xb))
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Extension to Multiple Dimensions

xa = xb + K (y −H(xb))

Remember that in the scalar case, we had

Ta = αTo + (1− α)Tb

= Tb + α(To − Tb)

We see that the matrix K plays a role equivalent to that of the
coefficient α.

K is called the gain matrix.

It determines the weight given to the observations

It handles the transformation of information defined in “observation
space” to the space of model variables.
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Extension to Multiple Dimensions

The next step in deriving the analysis equation is to describe the
statistical properties of the analysis errors.

We define

εa = xa − x∗

εb = xb − x∗

εo = y − y∗

We will assume that the errors are small, so that

H(xb) = H(x∗) + Hεb + O(ε2b)

where H is the Tangent Linear Operator associated with H.
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Extension to Multiple Dimensions

Substituting the expressions for the errors into our analysis equation,
and using H(x∗) = y∗, gives (to first order):

εa = εb + K (εo −Hεb)

As in the scalar example, we will assume that the mean errors have
been removed, so that εb = εo = 0. We see that this implies that
εa = 0.

In the scalar example, we derived the variance of the analysis error,
and defined our optimal analysis to minimize this variance.

In the multi-dimensional case, we must deal with covariances.
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Covariance

The covariance between two variables xi and xj is defined as

cov(xi , xj) = (xi − xi )(xj − x j)

Given a vector x = (x1, x2, · · · , xN)T, we can arrange the covariances
into a covariance matrix, C, such that Cij = cov(xi , xj).

Equivalently:
C = (x− x)(x− x)T

Covariance matrices are symmetric and positive definite

Mike Fisher (ECMWF) Introduction to Data Assimilation May 31, 2015 19 / 74



Extension to Multiple Dimensions

The analysis error is:

εa = εb + K (εo −Hεb)

= (I−KH)εb + Kεo

Forming the analysis error covariance matrix gives:

εaεTa = [(I−KH)εb + Kεo ] [(I−KH)εb + Kεo ]T

= (I−KH)εbε
T
b (I−KH)T + (I−KH)εbεTo KT

+KεoεTb (I−KH)T + KεoεTo KT

Assuming that the backgound and observation errors are uncorrelated
(i.e. εoεTb = εbεTo = 0), we find:

εaεTa = (I−KH)εbε
T
b (I−KH)T + KεoεTo KT
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Extension to Multiple Dimensions

εaεTa = (I−KH)εbε
T
b (I−KH)T + KεoεTo KT

This expression is the equivalent of the expression we obtained for the
error of the scalar analysis:

ε2a = (1− α)2ε2b + α2ε2o

Again, we see that K plays essentially the same role in the
multi-dimensional analysis as α plays in the scalar case.

In the scalar case, we chose α to minimize the variance of the analysis
error.

What do we mean by the minimum-variance analysis in the
multi-dimensional case?
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Extension to Multiple Dimensions

Note that the diagonal elements of a covariance matrix are variances
Cii = cov(xi , xi ) = (xi − xi )2.

Hence, we can define the minimum-variance analysis as the analysis
that minimizes the sum of the diagonal elements of the analysis error
covariance matrix.

The sum of the diagonal elements of a matrix is called the trace.

In the scalar case, we found the minimum-variance analysis by setting
dε2a
dα to zero.

In the multidimensional case, we are going to set

∂trace(εaεTa )

∂K
= 0

(Note: ∂trace(εaεTa )
∂K is the matrix whose ij th element is ∂trace(εaεTa )

∂Kij
.)
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Extension to Multiple Dimensions

We have: εaεTa = (I−KH)εbε
T
b (I−KH)T + KεoεTo KT.

The following matrix identities come to our rescue:

∂trace(KAKT)

∂K
= K(A + AT)

∂trace(KA)

∂K
= AT ∂trace(AKT)

∂K
= A

Applying these to ∂trace(εaεTa )/∂K gives:

∂trace(εaεTa )

∂K
= 2K

[
HεbεTb HT + εoεTo

]
− 2εbε

T
b HT = 0

Hence: K = εbε
T
b HT

[
HεbεTb HT + εoεTo

]−1
.
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Extension to Multiple Dimensions

K = εbε
T
b HT

[
HεbεTb HT + εoεTo

]−1
This optimal gain matrix is called the Kalman Gain Matrix.

Note the similarity with the optimal gain we derived for the scalar
analysis: α = ε2b/(ε2b + ε2o).

The variance of analysis error for the optimal scalar problem was:

ε2a =

(
1

ε2b
+

1

ε2o

)−1
The equivalent expression for the multi-dimensional case is:

εaεTa =

[(
εbε

T
b

)−1
+ HT

(
εoεTo

)−1
H

]−1
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Notation

The notation we have used for covariance matrices can get a bit
cumbersome.

The standard notation is:

Pa ≡ εaεTa

Pb ≡ εbε
T
b

R ≡ εoεTo

In many analysis schemes, the true covariance matrix of background
error, Pb, is not known, or is too large to be used.

In this case, we use an approximate background error covariance
matrix. This approximate matrix is denoted by B.
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Alternative Expression for the Kalman Gain

Finally, we derive an alternative expression for the Kalman gain:

K = PbHT
[
HPbHT + R

]−1
Multiplying both sides by

[
(Pb)−1 + HTR−1H

]
gives:[

(Pb)−1 + HTR−1H
]

K =
[
HT + HTR−1HPbHT

] [
HPbHT + R

]−1
= HTR−1

[
R + HPbHT

] [
HPbHT + R

]−1
= HTR−1

Hence:

K =
[
(Pb)−1 + HTR−1H

]−1
HTR−1
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Optimal Interpolation

Optimal Interpolation is a statistical data assimilation method based
on the multi-dimensional analysis equations we have just derived.

The method was used operationally at ECMWF from 1979 until 1996,
when it was replaced by 3D-Var.

The basic idea is to split the global analysis into a number of boxes
which can be analysed independently:

x
(i)
a = x

(i)
b + K(i)

(
y(i) −H(i)(xb)

)
where

xa =


x
(1)
a

x
(2)
a
...

x
(M)
a

 xb =


x
(1)
b

x
(2)
b
...

x
(M)
b

 K =


K(1)

K(2)

...

K(M)
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Optimal Interpolation

x
(i)
a = x

(i)
b + K(i)

(
y(i) −H(i)(xb)

)
In principle, we should use all available observations to calculate the
anaysis for each box. However, this is too expensive.

To produce a computationally-feasible algorithm, Optimal
Interpolation (OI) restricts the observations used for each box to
those observations which lie in a surrounding selection area:

analysis box

u
u

u
u u

u
u uu
u

u
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Optimal Interpolation

The gain matrix used for each box is:

K(i) =
(

PbHT
)(i) [(

HPbHT
)(i)

+ R(i)

]−1
Now, the dimension of the matrix

[(
HPbHT

)(i)
+ R(i)

]
is equal to

the number of observtions in the selection box.

Selecting observations reduces the size of this matrix, making it
feasible to use direct solution methods to invert it.

Note that to implement Optimal Interpolation, we have to specify(
PbHT

)(i)
and

(
HPbHT

)(i)
. This effectively limits us to very simple

observation operators, corresponding to simple interpolations.

This, together with the artifacts introduced by observation selection,
was one of the main reasons for abandoning Optimal Interpolation in
favour of 3D-Var.
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From Optimal Interpolation to 3D-Var

xa = xb + K (y −H(xb)) where K = PbHT
[
HPbHT + R

]−1
Optimal Interpolation (OI) applies direct solution methods to invert
the matrix

[
HPbHT + R

]
.

Data selection is applied to reduce the dimension of the matrix.

Direct methods require access to the matrix elements. In particular,
HPbHT must be available in matrix form.

This limits us to very simple observation operators.
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From Optimal Interpolation to 3D-Var

Iterative methods have significant advantages over the direct methods
used in OI.

They can be applied to much larger problems than direct techniques,
so we can avoid data selection.

They do not require access to the matrix elements.

Typically, to solve Ax = b, requires only the ability to calculate
matrix-vector products: Ax.

This allows us to use operators defined by pieces of code rather than
explicitly as matrices.

Examples of such operators include radiative-transfer codes, numerical
models, Fourier transforms, etc.
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Example: Conjugate Gradients
To solve Ax = b, where A is real, symmetric and positive-definite:

r0 := b− Ax0 p0 := r0 k := 0

repeat until rk+1 is sufficiently small

αk :=
rTk rk

pT
k Apk

xk+1 := xk + αkpk

rk+1 := rk − αkApk

βk :=
rTk+1rk+1

rTk rk
pk+1 := rk+1 + βkpk

k := k + 1

The result is xk+1
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From Optimal Interpolation to 3D-Var

There are two ways to apply iterative methods to the linear analysis
equation, depending which expression we adopt for K:

For K = PbHT
[
HPbHT + R

]−1
we have:

xa = xb + PbHTz where
[
HPbHT + R

]
z = y −H(xb)

For K =
[
(Pb)−1 + HTR−1H

]−1
HTR−1, we have:

xa = xb+δx where
[
(Pb)−1 + HTR−1H

]
δx = HTR−1 (y −H(xb))

The first of these alternatives is called PSAS

The second (although it may not look like it yet) is 3D-Var
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3D-Var

As we have seen, (linear) 3D-Var analysis can be seen as an
application of iterative solution methods to the linear analysis
equation.

Historically, 3D-Var was not developed this way.

We will now consider this alternative derivation.

We will need to apply Bayes’ theorem:

p(A|B) =
p(B|A)p(A)

p(B)

where p(A|B) is the probability of A given B, etc.
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Maximum Likelihood

We developed the linear analysis equation by searching for a linear
combination of observation and background that minimized the
variance of the error.

An alternative approach is to look for the most probable solution,
given the background and observations:

xa = arg max
x

(p(x|y and xb))

It will be convenient to define a cost function

J = − log (p(x|y and xb)) + const.

Then, since log is a monotonic function:

xa = arg min
x

(J(x))
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Maximum Likelihood

Applying Bayes’ theorem gives:

p(x|y and xb) =
p(y and xb|x)p(x)

p(y and xb)

Now, p(y and xb) is independent of x.

A Priori we know nothing about x – all values of x are equally likely.

Hence, we can regard p(x)/p(y and xb) as independent of x, and
write:

p(x|y and xb) ∝ p(y and xb|x)

Furthermore, if observation errors and backgound errors are
uncorrelated, then

p(y and xb|x) = p(y|x)p(xb|x)

⇒ J(x) = − log (p(y|x))− log (p(xb|x)) + const.
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Maximum Likelihood

The maximum likelihood approach is applicable to any probability
density functions p(y|x) and p(xb|x).

However, let us consider the special case of Gaussian p.d.f’s:

p(xb|x) =
1

(2π)N/2|Pb|1/2
exp

[
−1

2
(xb − x)T (Pb)−1 (xb − x)

]
p(y|x) =

1

(2π)M/2|R|1/2
exp

[
−1

2
(y −H(x))T R−1 (y −H(x))

]
Now, J(x) = − log (p(y|x))− log (p(xb|x)) + const.

Hence, with an appropriate choice of the constant const.:

J(x) =
1

2
(xb − x)T (Pb)−1 (xb − x) +

1

2
(y −H(x))T R−1 (y −H(x))

This is the 3D-Var cost function
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Maximum Likelihood

J(x) =
1

2
(xb − x)T (Pb)−1 (xb − x) +

1

2
(y −H(x))T R−1 (y −H(x))

The maximum likelihood analysis corresponds to the global minimum
of the cost function

At the minimum, the gradient of the cost function (∇J(x) or ∂J/∂x)
is zero:

∇J(x) = (Pb)−1 (x− xb) + HTR−1 (H(x)− y) = 0
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Maximum Likelihood

∇J(x) = (Pb)−1 (x− xb) + HTR−1 (H(x)− y) = 0

Now, if H is linear (or if we neglect second-order terms) then

H(x) = H(xb) + H(x− xb)

Hence: (Pb)−1 (x− xb) + HTR−1 (H(xb) + H(x− xb))− y) = 0

Rearranging a little gives:[
(Pb)−1 + HTR−1H

]
δx = HTR−1 (y −H(xb))

where δx = x− xb

This is exactly the equation for the minimum-variance analysis we
derived earlier!
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Maximum Likelihood

We have shown that the maximum likelihood approach is naturally
expressed in terms of a cost function representing minus the log of
the probability of the analysis state.

The minimum of the cost function corresponds to the maximum
likelihood (probability) solution.

For Gaussian errors and linear observation operators, the maximum
likelihood analysis coincides with the minimum variance solution.

This is not the case in general:

xML xMEAN

P
 (

x
 | 

y
)

x
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Maximum Likelihood

In the nonlinear case, the minimum variance approach is difficult to
apply.

The maximum-likelihood approach is much more generally applicable

As long as we know the p.d.f’s, we can define the cost function
I However, finding the global minimum may not be easy for highly

non-Gaussian p.d.f’s.

In practice, background errors are usually assumed to be Gaussian (or
a nonlinear transformation is applied to make them Gaussian).

I This makes the background-error term of the cost function quadratic.

However, non-Gaussian observation errors are taken into account. For
example:

I Directionally-ambiguous wind observations from scatterometers
I Observations contaminated by occasional gross errors, which make

outliers much more likely than implied by a Gaussian model.

Mike Fisher (ECMWF) Introduction to Data Assimilation May 31, 2015 41 / 74



Minimization

In 3D-Var, the analysis is found by minimizing the cost function:

J(x) =
1

2
(xb − x)T (Pb)−1 (xb − x) +

1

2
(y −H(x))T R−1 (y −H(x))

This is a very large-scale (dim(x) ≈ 108) minimization problem.

The size of the problem restricts on the algorithms we can use.

Derivative-free algorithms (which require only the ability to calculate
J(x) for arbitrary x) are too slow.

This is because each function evaluation gives very limited
information about the shape of the cost function.

I E.g. a finite difference, J(x + δv)− J(x) ≈ δvT∇J(x), gives a single
component of the gradient.

I We need O(108) components to work out which direction is “downhill”.
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Calculating the Gradient

To minimize the cost function, we must be able to calculate gradients.

The gradient (with respect to x) is:

∇J(x) = (Pb)−1 (x− xb) + HTR−1 (y −H(x))

Typically, R is diagonal — observation errors are treated as being
mutually uncorrelated.

Pb can be eliminated by a change of variable: χ = (Pb)−1/2(x− xb).

However, the matrix HT cannot be eliminated, and is much too large
to be represented explicitly.

Instead, we represent HT as an adjoint operator.
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Strong Constraint 4D-Var

So far, we have tacitly assumed that the observations, analysis and
background are all valid at the same time, so that H includes spatial,
but not temporal, interpolation.

In 4D-Var, we relax this assumption.

Let’s use G to denote a generalised observation operator that:
I Propagates model fields defined at some time t0 to the (various) times

at which the observations were taken.
I Spatially interpolates these propagated fields
I Converts model variables to observed quantities

We will use a numerical forecast model to perform the first step.

Note that, since models integrate forward in time and we do not have
an inverse of the forecast model, the observations must be available
for times tk ≥ t0.
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Strong Constraint 4D-Var

Formally, the 4D-Var cost function is identical to the 3D-Var cost
function — we simply replace H by G:

J(x) =
1

2
(xb − x)T (Pb)−1 (xb − x) +

1

2
(y − G(x))T R−1 (y − G(x))

However, it makes sense to group observations into sub-vectors of
observations, yk , that are valid at the same time, tk .

It is reasonable to assume that observation errors are uncorrelated in
time. Then, R is block diagonal, with blocks Rk corresponding to the
sub-vectors yk .

Write Gk for the generalised observation operator that produces the
model equivalents of yk . Then:

J(x) =
1

2
(xb − x)T (Pb)−1 (xb − x)

+
1

2

K∑
k=0

(yk − Gk(x))T R−1k (yk − Gk(x))
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Strong Constraint 4D-Var

J(x) =
1

2
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Strong Constraint 4D-Var

Now, each generalised observation operator can be written as

Gk = HkMt0→tk

where:
I Mt0→tk represents an integration of the forecast model from time t0 to

time tk .
I Hk represents a spatial interpolation and transformation from model

variables to observed variables — i.e. a 3D-Var-style observation
operator.

The model integration can be factorised into a sequence of shorter
integrations:

Mt0→tk =Mtk−1→tkMtk−2→tk−1
· · ·Mt1→t2Mt0→t1
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Strong Constraint 4D-Var

Let us introduce model states xk , which are defined at times tk .
I We will also denote the state at the start of the window as x0 (rather

than x, as we have done until now).

xk = Mt0→tk (x0)

= Mtk−1→tk (xk−1)

Then, we can write the cost function as:

J (x0, x1, · · · , xk) =
1

2
(xb − x0)T (Pb)−1 (xb − x0)

+
1

2

K∑
k=0

(yk −Hk(xk))T R−1k (yk −Hk(xk))
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Strong Constraint 4D-Var

Note that, by introducing the vectors xk , we have converted an
unconstrained minimization problem:

xa = arg min
x

(J(x0))

into a problem with strong constraints:

xa = arg min
x0

(J(x0, x1, · · · xk))

where xk = Mtk−1→tk (xk−1) for k = 1, 2, · · · ,K

For this reason, this form of 4D-Var is called strong constraint 4D-Var.
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Strong Constraint 4D-Var

When we derived the 3D-Var cost function, we assumed that the
observation operator was perfect: y∗ = H(x∗).

In deriving strong constraint 4D-Var, we have not removed this
assumption.

The generalised observation operators, Gk , are assumed to be perfect.

In particular, since Gk = HkMt0→tk , this implies that the model is
perfect:

x∗k =Mtk−1→tk

(
x∗k−1

)
.

This is called the perfect model assumption.
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Strong Constraint 4D-Var

J (x0, x1, · · · xk) =
1

2
(xb − x0)T (Pb)−1 (xb − x0)

+
1

2

K∑
k=0

(yk −Hk(xk))T R−1k (yk −Hk(xk))

When written in this form, it is clear that 4D-Var determines the
analysis state at every gridpoint and at every time within the analysis
window.

I.e., 4D-Var determines a four-dimensional analysis of the available
asynoptic data.

As a consequence of the perfect model assumption, the analysis
corresponds to a trajectory (i.e. an integration) of the forecast model.
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Weak Constraint 4D-Var

The perfect model assumption limits the length of analysis window
that can be used to roughly 12 hours (for an NWP system).

To use longer analysis windows (or to account for deficiencies of the
model that are already apparent with a 12-hour window) we must
relax the perfect model assumption.

We saw already that strong constraint 4D-Var can be expressed as:

xa = arg min
x0

(J(x0, x1, · · · xk))

subject to xk = Mtk−1→tk (xk−1) for k = 1, 2, · · · ,K

In weak constraint 4D-Var, we define the model error as

ηk = xk −Mtk−1→tk (xk−1) for k = 1, 2, · · · ,K

and we allow ηk to be non-zero.
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Weak Constraint 4D-Var

We can derive the weak constraint cost function using Bayes’ rule:

p(x0 · · · xK |xb; y0 · · · yK ) =
p(xb; y0 · · · yK |x0 · · · xK )p(x0 · · · xK )

p(xb; y0 · · · yK )

The denominator is independent of x0 · · · xK .

The term p(xb; y0 · · · yK |x0 · · · xK ) simplifies to:

p(xb|x0)
K∏

k=0

p(yk |xk)

Hence

p(x0 · · · xK |xb; y0 · · · yK ) ∝ p(xb|x0)

[
K∏

k=0

p(yk |xk)

]
p(x0 · · · xK )
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Weak Constraint 4D-Var

p(x0 · · · xK |xb; y0 · · · yK ) ∝ p(xb|x0)

[
K∏

k=0

p(yk |xk)

]
p(x0 · · · xK )

Taking minus the logarithm gives the cost function:

J(x0 · · · xK ) = − log (p(xb|x0))−
K∑

k=0

log (p(yk |xk))−log (p(x0 · · · xK ))

The terms involving xb and yk are familiar. They are the background
and observation terms of the strong constraint cost function.

The final term is new. It represents the a priori probability of the
sequence of states x0 · · · xK .
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Weak Constraint 4D-Var

Given the sequence of states x0 · · · xK , we can calculate the
corresponding model errors:

ηk = xk −Mtk−1→tk (xk−1) for k = 1, 2, · · · ,K

We can use our knowledge of the statistics of model error to define

p(x0 · · · xK ) ≡ p(x0; η1 · · · ηK )

One possibility is to assume that model error is uncorrelated in time.
In this case:

p(x0 · · · xK ) ≡ p(x0)p(η1) · · · p(ηK )

If we take p(x0) = const. (all states equally likely), and p(ηk) as
Gaussian with covariance matrix Qk , we see that weak constraint
4D-Var adds the following term to the cost function:

1

2

K∑
K=1

ηTk Q−1k ηk
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Weak Constraint 4D-Var

Hence, for Gaussian, temporally-uncorrelated model error, the weak
constraint cost function is:

J (x0, x1, · · · xk) =
1

2
(xb − x0)T (Pb)−1 (xb − x0)

+
1

2

K∑
k=0

(yk −Hk(xk))T R−1k (yk −Hk(xk))

+
1

2

K∑
K=1

ηTk Q−1k ηk

where ηk = xk −Mtk−1→tk (xk−1).
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The Extended Kalman Filter

Earlier in my lecture, I derived the linear analysis equation:

xak = xbk + Kk

(
yk −Hk(xbk)

)
I NB: I have added a subscript k to show that the analysis, background,

observations, etc. are all valid for some time tk .

I showed that the optimal choice for Kk is the Kalman Gain Matrix:

Kk = Pb
kHT

k

[
HkPb

kHT
k + Rk

]−1
≡
[
(Pb

k)−1 + HT
k R−1k Hk

]−1
HT

k R−1k

I gave the following expression for the covariance matrix of analysis
error:

Pa
k = (I−KkHk)Pb

k(I−KkHk)T + KkRkKT
k

Now we will consider how to generate Pb
k in an optimal way.
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The Extended Kalman Filter

In most applications of data assimilation, we do not just want to
produce a single analysis for one given time.

Rather, we are interested in a sequence of analyses for times
t0, t1, · · · , etc.

For each analysis in this sequence, we require background xbk (i.e. a
prior estimate of the state at time tk).

Our best prior estimate of the state at time tk is given by a forecast
from the preceding analysis:

xbk =Mtk−1→tk

(
xak−1

)
What is the error covariance matrix associated with this background?
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The Extended Kalman Filter

xbk =Mtk−1→tk

(
xak−1

)
Subtract the true state at time tk from both sides:

εbk =Mtk−1→tk

(
xak−1

)
− x∗k

Now write xak−1 = x∗k−1 + εak−1 and assume that εak−1 is small enough
for the following linear approximation to be valid:

Mtk−1→tk

(
xak−1

)
≈Mtk−1→tk

(
x∗k−1

)
+ Mtk−1→tk ε

a
k−1

Then:

εbk = Mtk−1→tk

(
x∗k−1

)
+ Mtk−1→tk ε

a
k−1 − x∗k

= Mtk−1→tk ε
a
k−1 + ηk

where ηk =Mtk−1→tk

(
x∗k−1

)
− x∗k is the model error.
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The Extended Kalman Filter

ηk =Mtk−1→tk

(
x∗k−1

)
− x∗k

We will assume that εak−1 = ηk = 0 ⇒ εbk = 0.

The covariance matrix of background error is:

εbk(εbk)T =
(
Mtk−1→tk ε

a
k−1 + ηk

) (
Mtk−1→tk ε

a
k−1 + ηk

)T
Assuming that analysis error and model error are uncorrelated, we can
multiply this out to get:

εbk(εbk)T = Mtk−1→tk ε
a
k−1(εak−1)TMT

tk−1→tk
+ ηkη

T
k

I.e.
Pb
k = Mtk−1→tk Pa

k−1MT
tk−1→tk

+ Qk

where Qk = ηkη
T
k is the covariance matrix of model error.
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The Extended Kalman Filter

We now have all the equations we need to analyse and propagate the
state, and to compute and propagate the covariances:

xbk = Mtk−1→tk

(
xak−1

)
Pb
k = Mtk−1→tk Pa

k−1MT
tk−1→tk

+ Qk

Kk = Pb
kHT

k

[
HkPb

kHT
k + Rk

]−1
xak = xbk + Kk

(
yk −Hk(xbk)

)
Pa
k = (I−KkHk)Pb

k(I−KkHk)T + KkRkKT
k

These equations define the Extended Kalman Filter.
I Note: the “extended” qualifier refers to the fact that we allow

non-linear observation operators, and propagate the state using a
nonlinear model. The standard Kalman filter is a purely linear analysis
system in which Hk and Mtk−1→tk are assumed to be linear.
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The Extended Kalman Filter

Subject to the assumptions we have made, the Kalman filter produces
an optimal sequence of analyses.

The analysis xak is the best (minimum variance) estimate of the state
at time tk , given xb0 and all observations up to time tk (i.e. y0 · · · yk).

The inputs to the Kalman filter are:
I An initial estimate of the state at time t0, and the corresponding

covariance matrix, Pb
0 .

I Observations yk , and covariances of observation error, Rk at each
analysis time.

I Covariance matrices of model error, Qk .

Note that, unlike OI, 3D-Var and 4D-Var, we do not have to specify
the covariance matrix of background error — it is generated and
propagated by the filter, using the model dynamics.

However, we do have to specify Qk . This is difficult!
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Kalman Filters for Large Dimensional Systems

The Kalman filter is impractical for large dimension systems.

It requires us to handle matrices of dimension N ×N, where N ∼ 108.

I The World’s fastest computer can sustain ∼ 1015 operations per
second.

I Multiplying two 108 × 108 matrices requires 1024 operations, and would
take about 32 years on this machine.

I Evaluating Pb
k = Mtk−1→tk Pa

k−1MT
tk−1→tk + Qk requires N ∼ 108 model

integrations.

A range of approximate Kalman filters has been developed for use
with large systems.

All of these methods rely on a low-rank approximation of the
covariance matrices of background and analysis error.
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Kalman Filters for Large Dimensional Systems

Suppose that Pb
k has rank M � N (e.g. M ∼ 100).

Then we can write Pb
k = Xb

k

(
Xb

k

)T
, where Xb

k is N ×M.

The Kalman gain becomes:

Kk = Pb
kHT

k

[
HkPb

kHT
k + Rk

]−1
= Xb

k

(
HkXb

k

)T [(
HkXb

k

)(
HkXb

k

)T
+ Rk

]−1
Note that, to evaluate K, we apply Hk to the M columns of Xb

k ,
rather than to the N columns of Pb

k

Note also that the analysis increment, xak − xbk = Kk

(
yk −Hk(xbk)

)
,

is a linear combination of the columns of Xb
k .
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Kalman Filters for Large Dimensional Systems

Kk = Xb
k

(
HkXb

k

)T [(
HkXb

k

)(
HkXb

k

)T
+ Rk

]−1
The analysis error covariance matrix is:

Pa
k = (I−KkHk)Pb

k(I−KkHk)T + KkRkKT
k

Since Pb
k = Xb

k

(
Xb

k

)T
, we see that all terms in the expression for Pa

k

contain an initial Xb
k and a final

(
Xb

k

)T
.

Hence

Pa
k = Xb

k Wk

(
Xb

k

)T
for some M ×M matrix Wk .
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Kalman Filters for Large Dimensional Systems

Pa
k = Xb

k Wk

(
Xb

k

)T
The covariance matrix is propagated using:

Pb
k+1 = Mtk→tk+1

Pa
k−1MT

tk→tk+1
+ Qk+1

=
(

Mtk→tk+1
Xb

k

)
Wk

(
Mtk→tk+1

Xb
k

)T
+ Qk+1

Note that this requires only M integrations of the tangent linear
model.

The addition of Qk+1 means that, in general, Pb
k+1 is not of low rank.

However, we can approximate it by projecting onto some suitable
M-dimensional subspace. The resulting algorithm is called a
reduced-rank Kalman filter.
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Kalman Filters for Large Dimensional Systems

The severe reduction in rank causes significant problems for the
reduced-rank kalman filter:

The analysis increment is restricted to an M-dimensional subspace.
I There are too few degrees of freedom available to fit the ∼ 106

observations.

The low-rank approximations of the covariance matrices suffer from
spurious long-distance correlations. These cause two problems:

I The analysis may generate spurious increments in regions where there
are no observations.

I The analysis may be unable to draw to isolated observations (e.g. over
Antarctica) if it thinks there is a significant correlation with a
well-observed region (e.g. Europe).

There are two ways around these problems:
I Local analysis (e.g. Evensen 2003, Ocean Dynamics 343–367; Ott et

al. 2004, Tellus 415–428).
I Shur product modification of the covariances (e.g. Houtekamer and

Mitchell 2001, MWR 123–137).
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Kalman Filters for Large Dimensional Systems

Local analysis solves the analysis equations independently for each
gridpoint, or for each of a set of regions covering the domain.

Each analysis uses only observations that are local to the gridpoint
(or region).

This guarantees that the analysis at each gridpoint (or region) is not
influenced by distant observations.

The global analysis is constructed by stitching together the
independent regional (or gridpoint) analyses, and is thus no longer a
linear combination of the columns of Xb

k .

In effect, the method acts to vastly increase the dimension of the
sub-space in which the analysis increment is constructed.

However, performing independent analyses for each region is not
optimal, and the method shares some of the problems of OI (e.g.
poor analysis of the large scales, and difficulties in producing balanced
analyses).
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Kalman Filters for Large Dimensional Systems

The Schur product approach uses the fact that if B and C are
covariance matrices, then so is A = B ◦ C, where ◦ denotes the Schur
(i.e. element-wise) product: Aij = BijCij .

Spurious long-range correlations in Pb
k may be suppressed by forming

the Schur product with a covariance matrix representing a decaying
function of distance.

I The modified covariance matrix is never formed explicitly. Rather, the
method deals with terms such as Pb

kHT
k .

The modified covariance matrix is no longer of the form Xb
k

(
Xb

k

)T
.

Forming the Schur product has the effect of vastly increasing the rank
of the matrix.

Choosing the product function is non-trivial. It is easy to modify Pb
k

in undesirable ways. In particular, balance relationships may be
adversely affected.
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Ensemble Methods

Ensemble Kalman filters are reduced-rank Kalman filters that
construct their covariance matrices as sample covariance matrices:

Pb
k =

1

M − 1

M−1∑
m=1

(xbk,m − xbk,m)(xbk,m − xbk,m)T

where the subscript m refers to the sample (ensemble member).

Note that we can write this as Pb
k = Xb

k

(
Xb

k

)T
, where

Xb
k =

1√
M − 1

(
(xbk,1 − xbk,1), (xbk,2 − xbk,2), · · · , (xbk,M − xbk,M)

)
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Ensemble Methods

The Extended Kalman filter includes terms involving Mk , MT
k , Hk

and HT
k .

I I.e. it uses the tangent linear and adjoint model and observation
operators.

In the ensemble Kalman filter, we avoid the need for tangent linear
and adjoint operators by approximating:

Pb
kHT

k ≈ 1

M − 1

M∑
m=1

(
xbk,m − xbk,m

)(
H(xbk,m)−H(xbk,m)

)T
HkPb

kHT
k ≈

1

M − 1

M∑
m=1

(
H(xbk,m)−H(xbk,m)

)(
H(xbk,m)−H(xbk,m)

)T
Not having to code tangent linear an adjoint operators is one of the
main attractions of the ensemble Kalman filter!
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Non-Gaussian Methods

Kalman filters, as well as 3D-Var, 4D-Var and OI, are essentially
Gaussian methods. They assume that the p.d.f. of error is fully
described by the mean and covariance.

Non-Gaussian methods do not make this assumption.

Particle filters are a class of non-Gaussian method that approximate
the p.d.f. by a discrete distribution:

p(x) =

{
wm if x = xk,m
0 otherwise

An ensemble of forecasts {xm;m = 1 · · ·M} is run, and each member
is given an associated weight, wm, according to its probability.

When an observation, y , is available, the weights are adjusted using
Bayes’ theorem:

wnew
m =

wold
m p(y |xm)∑M

m=1 w
old
m p(y |xm)
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Non-Gaussian Methods

In its most basic form, this is all there is to a particle filter. States
that agree with the observations get large weights, whereas states
that disagree with the observations get small weights.

In practice, the weights for some members become tiny. These
members are no longer useful and they are dropped from the
ensemble and replaced by new, more probable members.

This is achieved by periodically resampling the p.d.f.

A new ensemble is generated by randomly picking the old members
with probability proportional to their weights. Members with large
weight may be picked several times, whereas members with very small
weight are unlikely to be picked.

After resampling, all the weights are reset to 1/M.

Resampling may produce some identical members. However these
diverge slowly from each other because each member is forced with
different random perturbations that represent model error.
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Non-Gaussian Methods
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Non-Gaussian Methods

ECMWF  Slide 28
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