

Outline

1. Introduction
2. Operational configuration
3. 4DEnVar development
4. Localization with the time dimension
5. Conclusion

Outline

1. Introduction
2. Operational configuration
3. 4DEnVar development
4. Localization with the time dimension
5. Conclusion

Introduction

- 4D-Var
\checkmark Possible improved representation of \mathbf{B} with an ensemble of 4D-Vars (Météo-France, ECMWF):
"flow-dependent" error variances and correlations, with a wavelet B (Fisher, 2003; Varella et al, 2011).
\checkmark However, difficult development and maintenance of TL/AD.
\checkmark Low scalability of TL/AD at low resolution.
- 4D-Var based on a 4D ensemble: 4DEnVar
\checkmark Avoids TL/AD forecast models.
\checkmark Similar to 4D-Var (H, global analysis, additional terms, outer loops, ...).
\checkmark Localization in model space (versus observation space for EnKF).
\checkmark Lower cost than 4D-Var and parallelization possibilities.

Outline

1. Introduction
2. Operational configuration
3. 4DEnVar development
4. Localization with the time dimension
5. Conclusion

Current ARPEGE global assimilation configuration

- "Deterministic" 4D-Var
$\checkmark 6$ hour time window.
$\checkmark 2$ outer loops
T1198 C2.2 (7.5 km min) L105 / T149 (~135 km), T399 (~ 50 km).
\checkmark Jc-DFI, VarBC.
$\checkmark \mathbf{B}^{1 / 2}=\mathbf{K}^{\mathrm{b}} \Sigma^{\mathrm{b}} \mathbf{C}^{1 / 2}$, wavelet $\mathbf{C}, \mathbf{K}^{\mathrm{b}}=$ spectral + non-linear balances.
- Ensemble assimilation
$\checkmark 25$ perturbed 4D-Vars.
$\checkmark 1$ outer loop T479 C1.0 (40 km) / T149 C1.0.
\checkmark Multiplicative inflation of 3h forecast perturbations.
\checkmark Gives
$>$ filtered Σ^{b} from the last 25 perturbations, updated every 6 h ,
$>$ wavelet \mathbf{C} from the last 6×25 perturbations (last 30 h), updated every 6 h .

Outline

1. Introduction
2. Operational configuration
3. 4DEnVar development
4. Localization with the time dimension
5. Conclusion

4DEnVar formulation

- Minimization of
$J(\underline{\delta x})=\underline{\delta x}^{\top} \underline{\mathbf{B}}^{-1} \underline{\mathrm{~d}}+(\underline{\mathbf{d}}-\underline{\mathbf{H}} \underline{\delta \mathbf{x}})^{\top} \underline{\mathbf{R}}^{-1}(\underline{\mathbf{d}}-\underline{\mathbf{H}} \underline{\delta \mathbf{x}})$, with $\underline{\mathbf{B}}=\underline{\mathbf{X}}^{\mathrm{b}^{\prime}} \underline{\mathbf{X}}^{\mathrm{b}^{\top} \mathrm{T}}$,
$\underline{\mathbf{X}}^{\mathrm{b}^{\prime}}=\left(\underline{\mathbf{x}}^{\mathrm{b}^{\prime}}{ }_{1}, \ldots, \underline{\mathbf{x}}^{\mathrm{b}^{\prime}}{ }_{\mathrm{Ne}}\right)$, and $\underline{\mathbf{x}}^{\mathrm{b}^{\prime}}{ }_{n e}=\underline{\mathbf{x}}^{\mathrm{b}}{ }_{n \mathrm{e}}-\left\langle\underline{\mathbf{x}}^{\mathrm{b}}>/\left(\mathrm{N}^{\mathrm{e}}-1\right)^{1 / 2}\right.$, ne $=1$, N^{e}.
$\underline{\mathbf{x}}^{\mathrm{b}^{\prime}}$ with dimension $\mathrm{K}+1$ (times) $\times \mathrm{M}$ (3D variables) $\times \mathrm{N}$ (3D dimension)
(Liu et al, 2008, 2009; Buehner et al, 2010; Lorenc, 2012).
- Formulation developed at Météo-France
$\checkmark \underline{\mathbf{x}}$ as a control variable (no α or χ variables) (Desroziers et al, 2014).
\checkmark DPCG minimizer (Derber and Rosati, 1989) with $\underline{\mathbf{h}}=\underline{\mathbf{B}} \mathbf{q}$ operations.
\checkmark Also possible in observation space with $\underline{\mathbf{h}}^{y}=\underline{\mathbf{H}} \underline{\mathbf{B}} \underline{\mathbf{H}}^{\top} \underline{\mathbf{g}}^{y}$ operations.

Localization of ensemble covariances

- Need for localization

(Whitaker, 2011)
- Simplication of the localization

Same \mathbf{L} for all 3D variables and times: $\underline{\mathbf{B}}=\underline{X}^{\mathbf{b}^{\prime}} \underline{\underline{X}}^{b^{\top} T} \mathbf{O} \underline{\mathbf{L}}$, with

Matrix $\mathbf{1}$ contains $\mathrm{K}+1$ (times) $\times \mathrm{M}$ (var.) blocks I and L is a $\mathrm{N} \times \mathrm{N}$ correl. matrix.

- Applicat. of $\underline{\mathbf{B}}: \underline{\mathbf{h}}=\underline{\mathbf{B}} \mathbf{q}=\left(\underline{\mathbf{X}}^{b^{\prime}} \underline{\mathbf{X}}^{b^{\top} \top} \mathrm{o} \underline{\mathbf{L}}\right) \mathbf{q}=\Sigma_{\mathrm{ne}} \underline{\mathbf{X}}^{\mathrm{b}^{\prime}}{ }_{n \mathrm{e}} \mathrm{O}\left(\underline{\mathbf{1}} \mathbf{S}^{-1} \mathbf{L} \mathbf{S}^{\top} \underline{\mathbf{1}}^{\top}\left(\underline{\mathbf{X}}^{\mathrm{b}^{\prime}}{ }_{n \mathrm{e}} \mathrm{O} \mathbf{q}\right)\right)$.

4DEnVar under OOPS
 (Object Oriented Prediction System, ECMWF/Météo-France)

Jb classes

Optimization of the computations

- Geographical parallelization with MPI.
- Gridpoint and spectral parallelization with OpenMP.
- $\underline{x}^{b^{\prime}}$ reading parallelization with a pool of C_{++}threads.
- Computation cost with $\mathrm{Ne}^{\mathrm{e}}=200$, T399, 40 it, 75 nodes, 150 MPI tasks, 12 OpenMP threads by task: 9’ with conventional observations only.

Optimization of the localization

- Transform ψ, χ and Ps to have better agreement between all variables

$$
\begin{array}{lll}
\psi & -> & \Delta^{1 / 2} \psi \\
\chi \longrightarrow-\Delta^{1 / 2} \chi \\
\mathrm{~T} & \\
\mathrm{q} & & \\
\mathrm{Ps} \rightarrow & \Delta^{1 / 2} \mathrm{Ps}
\end{array}
$$

- Localized matrix with transformed variables

$$
\underline{\mathbf{B}}=\underline{\mathbf{U}}^{-1}\left(\left(\underline{\mathbf{U}} \underline{\mathbf{X}}^{\mathrm{b}^{\prime}}\right)\left(\underline{\mathbf{U}} \underline{\mathbf{X}}^{\mathrm{b}^{\prime}}\right)^{\top} \mathrm{o} \underline{\mathbf{L}}\right) \underline{\mathbf{U}}^{-\top} \text {, }
$$

where $\underline{\mathbf{U}}$ is the change of variables.

Optimization of

horizontal localization length scales

Vertical level

Results with conventional data 4D-Var / 4DEnVar ($\mathrm{N}^{\mathrm{e}}=200$)

85184 ref: 85172014052500
TEMP-Uwind N.Hemis
used U

METEO FRANCE

Outline

1. Introduction
2. Operational configuration
3. 4DEnVar development
4. Localization with the time dimension
5. Conclusion

Advection of the localization

- Static L

$$
\underline{L}=\left(\begin{array}{ll}
\mathrm{L} \mathrm{~L} & \mathrm{~L} \\
\mathrm{~L} & \\
\mathrm{~L} & \mathrm{~L}
\end{array}\right)=\left(\begin{array}{l}
\mathrm{I} \\
\mathrm{I} \\
\mathrm{I}
\end{array}\right) \mathrm{L}\left(\begin{array}{ll}
\mathrm{I} \mathrm{I} & \mathrm{I}
\end{array}\right)=\underline{1} \mathrm{~L} \underline{1}^{\top} .
$$

- Advected L

Burgers'model $\partial u / \partial t+u \partial u / \partial x+v \partial^{2} u / \partial x^{2}=0$

m / s

Static L
$\mathrm{Ne}^{\mathrm{e}}=100 . \mathrm{Lc}=1500 \mathrm{~km}$
m/s

km t_{0}
__ 4D-Var δu
.... 4DEnVar סu without localization
---- 4DEnVar δu with localization

$\mathrm{t}_{\mathrm{f}}=48 \mathrm{~h}$

Advected L
 $$
\mathrm{Ne}^{\mathrm{e}}=100 . \mathrm{Lc}=1500 \mathrm{~km}
$$

$\underline{\mathbf{C}}=\underline{\mathbf{X}}^{b^{\prime}} \underline{\underline{X}}^{b^{\top} T} \circ \underline{\mathbf{A}} \underline{\mathrm{~A}} \underline{\mathbf{A}}^{\top}$

m / s

km

$\mathrm{t}_{\mathrm{f}}=48 \mathrm{~h}$
_ 4D-Var δu
.... 4DEnVar δu without localization
---- 4DEnVar δu with adv localization

Advection from t_{0} to t_{k} A Lagrangian point of view

- Lagrangian point of view

$$
\alpha\left(s, t_{k}\right)=\alpha\left(s\left(t_{0}\right), t_{0}\right)
$$

- Computation of deformed grid $\mathrm{s}\left(\mathrm{t}_{0}\right)$

$$
\begin{aligned}
& s\left(t_{k}-\delta t\right)=s \\
& \text { for } k^{\prime}=k-1:-1: 0 \\
& \left.s\left(t_{k^{\prime}}-\delta t\right)=s\left(t_{k^{\prime}}-\delta t\right)-u\left(s\left(t_{k^{\prime}}-\delta t\right), t_{k^{\prime}}-\delta t\right)\right)^{*} \delta t \\
& \text { end }
\end{aligned}
$$

- Advection as a simple interpolation of $\alpha\left(\mathrm{t}_{0}\right)$ at $\mathrm{s}\left(\mathrm{t}_{0}\right)$
$\alpha\left(\mathrm{s}, \mathrm{t}_{\mathrm{k}}\right)=\alpha\left(\mathrm{s}\left(\mathrm{t}_{0}\right), \mathrm{t}_{0}\right)=l^{n t}\left(\mathrm{~s}\left(\mathrm{t}_{0}\right)\right) \alpha\left(\mathrm{s}, \mathrm{t}_{0}\right)$,
where $I^{n t}\left(s\left(t_{0}\right)\right)$ are interpolation coefficients.

4DEnVar ($\mathrm{Ne}^{\mathrm{e}}=200$)

4DEnVar + localization advection

Temperature increment $\left({ }^{\circ} \mathrm{K}\right)$ at t_{0} with 1 obs at $\mathrm{t}_{\mathrm{f}}(@ 10 \mathrm{~km})$

Hybrid formulation

- Hybrid matrix: $\quad \underline{\mathbf{B}}^{\mathrm{n}}=\boldsymbol{\gamma}^{0} \underline{\mathbf{B}}^{\mathrm{c}}+\left(1-\gamma^{\left.\sigma^{2}\right)} \underline{\mathbf{B}}^{\mathrm{e}}\right.$.
- Static $\underline{B}^{\text {C }}$

- Advected $\underline{B}^{\text {c }}$

$$
\underline{\mathbf{B}}^{\mathrm{c}}=\left(\begin{array}{ll}
\mathbf{B}^{\mathrm{B}} & \mathbf{B}^{\mathrm{B}} \mathbf{A}_{1}^{\top} \\
\mathbf{A}_{1} \mathbf{B}^{\mathrm{c}} & \mathbf{B}^{\mathrm{c}} \mathbf{A}_{K}^{\top} \\
\mathbf{A}_{K} \mathbf{B}^{\mathrm{c}} & \mathbf{A}_{K} \mathbf{B}^{\mathrm{c}} \mathbf{A}_{K}^{\top}
\end{array}\right)=\left(\begin{array}{l}
\mathbf{I} \\
\mathbf{A}_{1} \\
\mathbf{A}_{K}
\end{array}\right) \mathbf{B}^{\mathrm{c}}\left(\begin{array}{lll}
\mathbf{I} & \mathbf{A}_{1}^{\top} & \left.\mathbf{A}_{K}^{\top}\right)=\underline{\mathbf{A}} \mathbf{B}^{\mathrm{c}} \underline{\mathbf{A}}^{\top} . \\
\text { METEO FI }
\end{array}\right.
$$

4D-Var / 4DEnVar with Bc only (3D-Var FGAT) Temperature increment (${ }^{\circ} \mathrm{K}$) at t_{0} with 1 obs at $\mathrm{t}_{\mathrm{f}}(@ 10 \mathrm{~km})$

Outline

1. Introduction
2. Operational configuration
3. 4DEnVar development
4. Localization with the time dimension
5. Conclusion

Conclusion and future work

- Conclusion
\checkmark Possible alternative to the use of α variables: 4D increment $\underline{\delta x}$.
\checkmark Reading of perturbations is quick enough.
\checkmark First version of ARPEGE 4DEnVar at Météo-France.
\checkmark Localization is more difficult with the time dimension.
\checkmark The use of Lagrangian advection may help.
- Future work
\checkmark ARPEGE 4DEnVar: more observations, outer loops, Jc-DFI, ...
\checkmark Improvement of spatial / spectral filtering, sensitivity to ensemble size.
\checkmark Ensemble of 4DEnVars.
\checkmark Development of 3D/4DEnVar for high resolution (1,3 km) LAM AROME.

