On a 3D Model with Anisotropic, Rotating Convection and Phase Changes for DA

Onno Bokhove, Steve Tobias, Tom Kent

School of Mathematics, University of Leeds, UK

Introduction

- High-resolution (convective-scale) NWP models are becoming the norm: more dynamical processes such as convection, cloud formation, & small-scale gravity waves, are resolved explicitly.
- DA techniques need to evolve in order to keep up with the developments in high-resolution NWP.
- It may be unfeasible (and even undesirable) to investigate the potential of DA schemes on state-of-the-art NWP models. Idealised models have been employed that:
- capture some fundamental features of dynamics,
- are computationally inexpensive to implement, and
- allow an extensive investigation of the proposed scheme.
- A hierarchy of "toy" models, e.g., Lorenz' model (L2005), QG/BV model have been employed in DA, including: - a "convective-scale" 1.5D shallow-layer model (Kent et al.

buoyancy equation is used to eliminate $w_0 \propto b_1$ in the vertical vorticity equation:

$$\partial_t q + J(\psi, q) = 0$$
 (3a)

$$q \equiv \nabla^2 \psi + \partial_z \left(\frac{1}{\partial_z (\bar{b}_0 - \bar{\rho}/\hat{\Gamma})} \partial_z \psi\right)$$
(3b)

$$\partial_t \partial_z \psi + J(\psi, \partial_z \psi) = 0 \quad \text{at} \quad z = 0, H_T$$
 (3c

• with quasigeostrophic potential vorticity q.

Linear Dispersion Relations 5

Using $\propto e^{i(kx+ly+mz-\omega t)}$ with $\kappa^2 = k^2 + l^2$, for \bar{b}_0 constant, dispersion relations for the 3D parent Boussinesq, the reduced rotation constrained model, and the quasi-geostrophic equations are:

• Boussinesq:
$$\omega^2 = \frac{m^2/Ro^2 + \kappa^2(-\bar{\rho}')/Fr^2}{(\kappa^2 + m^2)}$$

• rotation constrained: $\omega^2 = m^2/(\kappa^2 R o^2) + (-\bar{\rho}'/Fr^2)$, arising

- By using (5b) and the restriction on the functional derivatives $\delta \mathcal{H}/\delta \zeta = 0$ at r = R and $\delta \mathcal{H}/\delta w_0 = 0$ at $z = 0, H_T$ (for the inviscid case), the Hamiltonian formulation (7) yields the (inviscid) equations of motion (2), essentially by reversing its construction.
- Again $\zeta = \nabla^2 \psi$ must be defined and used in separation.
- Clearly (7) is skew-symmetric and Jacobi's identity $\{\mathcal{F}, \{\mathcal{G}, \mathcal{H}\}\} + \{\mathcal{H}, \{\mathcal{F}, \mathcal{G}\}\} + \{\mathcal{G}, \{\mathcal{H}, \mathcal{F}\}\} = 0$ verified (doubly-periodic horizontal domain).
- If we take variations of \mathcal{F} as arbitrary test functions, then (7) serves as (finite element) weak formulation.

Phase Changes: Iodine Cycle

- 2015, this DA workshop).
- Here, we propose to add a 3D rotating convection model to this hierarchy.

Boussinesq Parent Model 2

- Following Julien et al. (2006), rotating Boussinesq equations are scaled with $\delta p^*, \delta \rho^*$ buoyancy $B = g |\delta \rho^*| / \rho_r^*$, horizontal and vertical length scales *L* and L_z (ratio $A_z = L_z/L$), and velocity scales U and $L_z U/L$.
- The resulting dimensionless model reads:

$$D_{t}\mathbf{u}_{H} + \frac{1}{Ro}\hat{\mathbf{z}} \times \mathbf{u} = -P\nabla_{H}p + \frac{1}{Re}\nabla^{2}\mathbf{u}_{H}$$
(1a)

$$A_{z}D_{t}w = -\frac{P}{A_{z}}\partial_{z}p + \Gamma b + \frac{1}{Re}\nabla^{2}w$$
(1b)

$$D_{t}\left(b - \frac{1}{\Gamma Fr^{2}}\bar{\rho}\right) = \frac{1}{Pe}\nabla^{2}b$$
(1c)

$$\nabla \cdot \mathbf{u} = 0$$
(1d)

- with velocity $\mathbf{u} = (\mathbf{u}_H, w)$, buoyancy $b = -g\rho/\rho_r$, background density $\bar{\rho}(z)$,
- Rossby $Ro = U/(2\Omega L)$, Froude $Fr = U/(N_0L)$ (buoyancy frequency N_0), Euler $P = \delta p^*/(\rho_r^* U^2)$, buoyancy $\Gamma =$ BL/U^2 , and Reynolds Re and Peclet Pe numbers.

3D Model of Rotationally Con-3 strained Convection

• Using a multi-scale, singular expansion in $Ro = \epsilon$ with P = $1/\epsilon^2, \Gamma = \hat{\Gamma}/\epsilon, A_z = O(1), \Gamma Fr^2 = O(1), b \to b_0 + \epsilon b_1, p \to \epsilon p,$ $\partial_z \rightarrow \epsilon \partial_z$ a non-hydrostatic rotationally constrained model Julien et al. (2006) derive is:

$$\partial_t \zeta = -J(\psi, \zeta) + \partial_z w_0 + \frac{1}{\underline{Re}} \nabla_H^2 \zeta \qquad (2a)$$

$$\partial_t w_0 = -J(\psi, w_0) \underline{-\partial_z \psi + \hat{\Gamma} b_1} + \frac{1}{\underline{Re}} \nabla_H^2 w_0 \qquad (2b)$$

$$\partial_t b_1 = -J(\psi, b_1) - w_0 \partial_z (\bar{b}_0 - \bar{\rho}/\hat{\Gamma}) + \frac{1}{\underline{Pe}} \nabla_H^2 b_1 \qquad (2c)$$

$$\zeta = \nabla_H^2 \psi \qquad (2d)$$

when $m \ll k$, so for anisotropic convection:

- Fig. 1. From Sprague et al. [5]: temperature/buoyancy anomaly. Their Pr = 7, $\tilde{Ra} = 40$.
- quasigeostrophy: $\omega = 0$.

Hamiltonian Formulation 6

• In the inviscid case, the Hamiltonian/energy of (2) is:

$$\mathcal{H} = \frac{1}{2} \int_{D} |\nabla_{H}\psi|^{2} + w_{0}^{2} + \frac{\hat{\Gamma}}{\partial_{z}(\bar{b}_{0} - \rho/\hat{\Gamma})} b_{1}^{2} \,\mathrm{d}x \mathrm{d}y \mathrm{d}z \qquad (4)$$

upon using the boundary conditions $\psi = 0$ at r = R, $w_0 = 0$ at $z = 0, H_T$.

• Variations of the Hamiltonian are:

$$\delta \mathcal{H} = \frac{1}{2} \int_{D} -\psi \delta \zeta + w_0 \delta w_0 + \frac{\hat{\Gamma}}{\partial_z (\bar{b}_0 - \bar{\rho}/\hat{\Gamma})} b_1 \delta b_1 \, \mathrm{d}x \mathrm{d}y \mathrm{d}z \quad (5a)$$
$$= \int_{D} \frac{\delta \mathcal{H}}{\delta \zeta} \delta \zeta + \frac{\delta \mathcal{H}}{\delta w_0} \delta w_0 + \frac{\delta \mathcal{H}}{\delta b_1} \delta b_1 \, \mathrm{d}x \mathrm{d}y \mathrm{d}z \quad (5b)$$

using the restriction on the functional derivatives $\delta \mathcal{H}/\delta \zeta =$ 0 at r = R and $\delta \mathcal{H} / \delta w_0 = 0$ at $z = 0, H_T$.

• A co-symplectic formulation follows from (2) and (5a):

- Consider a container with dry air at room temperature and a small mass fraction of solid iodine particles on the bottom.
- Heat and keep the bottom above the iodine sublimation temperature $T_s = 386$ K.
- Keep the top below T < Ts with a teflon surface repelling iodine solidification.
- Rotating Rayleigh-Bénard convection set-up.
- Total dimensional density is related to temperature as follows: $\rho = \rho_0 (1 - \alpha_T T)$.
- A bulk two-state moisture model is adopted with iodine vapor q_v and iodine snow/precipitate q_s , cf. similar approach in Zerroukat & Allen.

Future Work: Conceptual Labo-9 ratory Experiment & DA

Fig. 2. Left: Sketch of experimental set-up for rotating Rayleigh-Bénard convection with iodine phase changes. Right: sample of iodine vapor.

- with horizontal Laplacian $\nabla_H^2 = \partial_x^2 + \partial_y^2$, (leading order) vertical velocity w_0 ,
- slowly evolving or constant buoyancy \bar{b}_0 , next order buoyancy b_1 , $p = \psi$, Jacobian $J(\psi, \zeta) \equiv \partial_x \psi \partial_y \zeta - \partial_x \zeta \partial_y \psi$ etc., and
- underlined terms denote the dissipative, viscous terms (or turbulent counterparts).
- We consider a cylindrical domain D with radius = $r\sqrt{x^2+y^2} \in [0,R]$ and, on average, a vertical coordinate $z \in [0, H_T]$ for fixed R and H_T .

3D Baroclinic Quasigeostrophy 4

• Ignoring the underlined dissipative terms in (2), stratified quasigeostrophy arrives when hydrostatic balance is assumed (equating the twice underlined terms), and the

$$\partial_{t}\zeta = J(\frac{\delta\mathcal{H}}{\delta\zeta}, \zeta) + J(\frac{\delta\mathcal{H}}{\delta w_{0}}, w_{0}) + J(\frac{\delta\mathcal{H}}{\delta b_{1}}, b_{1}) + \partial_{z}\frac{\delta\mathcal{H}}{\delta w_{0}}$$
(6a)

$$\partial_{t}w_{0} = J(\frac{\delta\mathcal{H}}{\delta\zeta}, w_{0}) + \partial_{z}\frac{\delta\mathcal{H}}{\delta\zeta} + \partial_{z}(\bar{b}_{0} - \rho/\hat{\Gamma})\frac{\delta\mathcal{H}}{\delta b_{1}}$$
(6b)

$$\partial_{t}b_{1} = J(\frac{\delta\mathcal{H}}{\delta\zeta}, b_{1}) - \partial_{z}(\bar{b}_{0} - \bar{\rho}/\hat{\Gamma})\frac{\delta\mathcal{H}}{\delta w_{0}}$$
(6c)

$$\zeta = \nabla^{2}\psi.$$
(6d)

• <u>Underlined terms</u> are null. Potential vorticity (Julien et al. 2006) is conserved.

Numerical Weak Formulation 7

• Consequently, a weak formulation and candidate Hamiltonian formulation reads

$$\frac{\mathrm{d}\mathcal{F}}{\mathrm{d}t} = \{\mathcal{F}, \mathcal{H}\} \\
\equiv \int_{D} \zeta J(\frac{\delta\mathcal{F}}{\delta\zeta}, \frac{\delta\mathcal{H}}{\delta\zeta}) + w_{0} \left(J(\frac{\delta\mathcal{F}}{\delta w_{0}}, \frac{\delta\mathcal{H}}{\delta\zeta}) + J(\frac{\delta\mathcal{F}}{\delta\zeta}, \frac{\delta\mathcal{H}}{\delta w_{0}}) \right) \\
+ b_{1} \left(J(\frac{\delta\mathcal{F}}{\delta b_{1}}, \frac{\delta\mathcal{H}}{\delta\zeta}) + J(\frac{\delta\mathcal{F}}{\delta\zeta}, \frac{\delta\mathcal{H}}{\delta b_{1}}) \right) \\
+ \frac{\delta\mathcal{F}}{\delta\zeta} \partial_{z} \frac{\delta\mathcal{H}}{\delta w_{0}} - \frac{\delta\mathcal{H}}{\delta\zeta} \partial_{z} \frac{\delta\mathcal{F}}{\delta w_{0}} \\
+ \partial_{z} (\bar{b}_{0} - \bar{\rho}/\hat{\Gamma}) \left(\frac{\delta\mathcal{F}}{\delta w_{0}} \frac{\delta\mathcal{H}}{\delta b_{1}} - \frac{\delta\mathcal{H}}{\delta w_{0}} \frac{\delta\mathcal{F}}{\delta b_{1}} \right) \mathrm{d}x \mathrm{d}y \mathrm{d}z. \quad (7)$$

References

- [1] http://www1.maths.leeds.ac.uk/~obokhove http://www1.maths.leeds.ac.uk/~smt http://www1.maths.leeds.ac.uk/~mmtk
- [2] Julien et al. 2006: Generalized quasi-geostrophy for anisotropic rotationally constrained flows. JFM 555.
- [3] Kent, Tobias, Bokhove 2015: A modified 1.5D shallow water model for investigating convective-scale data assimilation. In prep. MWR.
- [4] Lorenz, E. 2005: Designing chaotic models. JAS 62.
- [5] Sprague, M., Julien, K., Werne, J. 2006: Numerical simulation of an asymptotically reduced system for rotationally constrained convection. JFM 551.
- [6] Zerroukat, M. Allen, T. 2015: A moist Boussinesq shallow water equations set for testing atmospheric models. JCP 290.